[Перевод] Спросите Итана: почему скорость света такая, какая есть?

image
Вне зависимости от цвета, длины волны или энергии, скорость, с которой свет перемещается в вакууме, остаётся постоянной. Она не зависит от местоположения или направлений в пространстве и времени

Ничто во Вселенной не способно двигаться быстрее света в вакууме. 299 792 458 метров в секунду. Если это массивная частица, она может лишь приблизиться к этой скорости, но не достичь её; если это безмассовая частица, она всегда должна двигаться именно с этой скоростью, если дело происходит в пустом пространстве. Но откуда нам это известно и что тому причиной? На этой неделе наш читатель задаёт нам три связанных со скоростью света вопроса:

Почему скорость света конечна? Почему она именно такая, какая есть? Почему не быстрее и не медленнее?


Вплоть до XIX века у нас даже не было подтверждений этим данным.
image
Иллюстрация света, проходящего через призму и разделяющегося на чёткие цвета.

Если свет проходит через воду, призму или любую другую среду, он разделяется на разные цвета. Красный цвет преломляется не под тем углом, под которым это делает синий, из-за чего и возникает что-то типа радуги. Это можно наблюдать и вне видимого спектра; инфракрасный и ультрафиолетовый свет ведут себя так же. Это было бы возможно, только если скорость света в среде отличается для света разных длин волн/энергий. Но в вакууме, вне всякой среды, всякий свет перемещается с одной и той же конечной скоростью.

image
Разделение света на цвета происходит из-за разных скоростей движения света, зависящих от длины волны, через среду

До этого додумались только в середине XIX века, когда физик Джеймс Клерк Максвелл показал, что на самом деле представляет собой свет: электромагнитную волну. Максвелл впервые поставил независимые явления электростатики (статичные заряды), электродинамики (движущиеся заряды и токи), магнитостатики (постоянные магнитные поля) и магнитодинамики (наведённые токи и переменные магнитные поля) на единую, объединённую платформу. Управляющие ею уравнения — уравнения Максвелла — позволяют вычислять ответ на простой вроде бы вопрос: какие типы электрических и магнитных полей могут существовать в пустом пространстве вне электрических или магнитных источников? Без зарядов и без токов можно было бы решить, что никакие –, но уравнения Максвелла удивительным образом доказывают обратное.

image
Табличка с уравнениями Максвелла с обратной стороны его памятника

Ничто — одно из возможных решений;, но возможно и другое — колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля. У них есть определённые амплитуды. Их энергия определяется частотой колебаний полей. Они передвигаются с определённой скоростью, определяемой двумя константами: ε0 и µ0. Эти константы определяют величину электрического и магнитного взаимодействий в нашей Вселенной. Получаемое уравнение описывает волну. И, как у всякой волны, у неё есть скорость, 1/√ε0 µ0, которая оказывается равной c, скорости света в вакууме.

image
Колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля, распространяющиеся со скоростью света, определяют электромагнитное излучение

С теоретической точки зрения, свет — безмассовое электромагнитное излучение. По законам электромагнетизма он обязан двигаться со скоростью 1/√ε0 µ0, равной c — вне зависимости от остальных его свойств (энергии, импульса, длины волны). ε0 можно измерить, сделав и измерив конденсатор; µ0 точно определяется из ампера, единицы электрического тока, что и даёт нам c. Та же фундаментальная константа, впервые выведенная Максвеллом в 1865 году, с тех пор появлялась во многих других местах:

• Это скорость любой безмассовой частицы или волны, включая гравитационные.
• Это фундаментальная константа, соотносящая ваше движение в пространстве с вашим движением во времени в теории относительности.
• И это фундаментальная константа, связывающая энергию с массой покоя, E = mc2

image
Наблюдения Рёмера снабдили нас первыми измерениями скорости света, полученными при помощи геометрии и измерения времени, необходимого на то, чтобы свет прошёл расстояние, равное диаметру орбиты Земли.

Первые измерения этой величины были сделаны во время астрономических наблюдений. Когда луны Юпитера входят и выходят в положение затмения, они кажутся видимыми или невидимыми с Земли в определённой последовательности, зависящей от скорости света. Это привело к первому количественному измерению с в XVII веке, которое определили в 2,2 × 108 м/с. Отклонение звёздного света — из-за движения звезды и Земли, на которой установлен телескоп — тоже можно оценить численно. В 1729 году этот метод измерения с показал значение, отличающееся от современного всего на 1,4%. К 1970-м с определили равным 299 792 458 м/с с погрешностью всего в 0,0000002%, большая часть которой проистекала из невозможности точного определения метра или секунды. К 1983 году секунду и метр переопределили через с и универсальные свойства излучения атома. Теперь скорость света равна точно 299 792 458 м/с.

image
Атомный переход с орбитали 6S, δf1, определяет метр, секунду и скорость света

Так почему же скорость света не больше и не меньше? Объяснение такое же простое, как указанный на рис. Выше атом. Атомные переходы происходят так, как происходят, из-за фундаментальных квантовых свойств строительных блоков природы. Взаимодействия атомного ядра с электрическим и магнитными полями, создаваемыми электронами и другими частями атома приводят к тому, что разные энергетические уровни оказываются чрезвычайно близко друг к другу, но всё же немного отличаются: это называется сверхтонким расщеплением. В частности, частота перехода сверхтонкой структуры цезия-133 испускает свет совершенно определённой частоты. Время, за которое проходит 9 192 631 770 таких циклов, определяет секунду; расстояние, которое свет проходит за это время, равняется 9 192 631 770 метрам; скорость, с которой распространяется этот свет, определяет с.

image
Пурпурный фотон переносит в миллион раз больше энергии, чем жёлтый. Космический гамма-телескоп Ферми не показывает никаких задержек какого-либо из фотонов, пришедших к нам от гамма-всплеска, что подтверждает постоянство скорости света для всяких энергий

Чтобы поменять это определение, нужно, чтобы с этим атомным переходом или с идущим от него светом произошло что-то фундаментально отличное от его текущей природы. Этот пример также даёт нам ценный урок: если бы атомная физика и атомные переходы работали бы в прошлом или на дальних расстояниях по-другому, это было бы свидетельством изменения скорости света со временем. Пока что все проводимые нами измерения лишь накладывают дополнительные ограничения на постоянство скорости света, и эти ограничения весьма строги: изменение не превосходит 7% от текущего значения за последние 13,7 млрд лет. Если бы по какой-то из этих метрик скорость света оказалась не постоянной, или же она отличалась бы у разных типов света, это привело бы к крупнейшей научной революции со времён Эйнштейна. Вместо этого все свидетельства говорят в пользу Вселенной, в которой все законы физики всегда, везде, во всех направлениях, во все времена остаются одинаковыми, включая и физику самого света. В каком-то смысле это тоже достаточно революционные сведения.

Итан Сигель — астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

© Geektimes