R и работа со временем. Что за кулисами?
Даты и время являются весьма непростыми объектами:
- месяца содержат различное число дней;
- года бывают високосными и нет;
- существуют различные временнЫе зоны;
- часы, минуты, дни используют различные системы счисления.
Далее приведены ряд моментов, которые редко высвечиваются в документации, а также трюки, которые позволяют писать быстрый и контролируемый код.
Совсем краткое резюме для смартфоночиталей: на больших объемах данных используем только POSIXct
с дробными долями секунд. Будет хорошо, понятно, быстро.
Является продолжением серии предыдущих публикаций.
ISO 8601 Data elements and interchange formats — Information interchange — Representation of dates and times is an international standard covering the exchange of date- and time-related data.
Дата
Sys.Date()
print("-----")
x <- as.Date("2019-01-29") # в UTC
print(x)
tz(x)
str(x)
dput(x)
print("-----")
dput(as.Date("1970-01-01")) # ! origin
## [1] "2021-04-29"
## [1] "-----"
## [1] "2019-01-29"
## [1] "UTC"
## Date[1:1], format: "2019-01-29"
## structure(17925, class = "Date")
## [1] "-----"
## structure(0, class = "Date")
Нестандартный формат даты при инициализации должен специфицироваться специально
as.Date("04/20/2011", format = "%m/%d/%Y")
## [1] "2011-04-20"
Время
В R применяются два базовых типа времени: POSIXct
и POSIXlt
.
Внешние представления POSIXct
и POSIXlt
выглядят похожими. А внутренние?
z <- Sys.time()
glue("Внешнее представление",
"POSIXct - {z}",
"POSIXlt - {as.POSIXlt(z)}", "---", .sep = "\n")
glue("Внутреннее представление",
"POSIXct - {capture.output(dput(z))}",
"POSIXlt - {paste0(capture.output(dput(as.POSIXlt(z))), collapse = '')}",
"---", .sep = "\n")
# Получение отдельных элементов даты/времени базовыми средствами
glue("Год: {year(z)} \nМинуты: {minute(z)}\nСекунды: {second(z)}\n---")
## Внешнее представление
## POSIXct - 2021-04-29 15:18:04
## POSIXlt - 2021-04-29 15:18:04
## ---
## Внутреннее представление
## POSIXct - structure(1619698684.50764, class = c("POSIXct", "POSIXt"))
## POSIXlt - structure(list(sec = 4.50764489173889, min = 18L, hour = 15L, mday = 29L, mon = 3L, year = 121L, wday = 4L, yday = 118L, isdst = 0L, zone = "MSK", gmtoff = 10800L), class = c("POSIXlt", "POSIXt"), tzone = c("", "MSK", "MSD"))
## ---
## Год: 2021
## Минуты: 18
## Секунды: 4
## ---
Сразу делаем заключение, что для серьезной работы с данными (более 10 строк с временем), про POSIXlt
забываем как про страшный сон.
POSIXct
по своей сути является оберткой для unixtimestamp, количество секунд (миллисекунд) с некоей нулевой точки (обычно за 0 полагают 01.01.1970). Делаем ставку в работе именно на него.
Полезный инструмент — online преобразование времени в unixtimestamp:
Sys.time()
z <- 1548802400
as.POSIXct(z, origin = "1970-01-01") # local
as.POSIXct(z, origin = "1970-01-01", tz = "UTC") # in UTC
## [1] "2021-04-29 15:18:04 MSK"
## [1] "2019-01-30 01:53:20 MSK"
## [1] "2019-01-29 22:53:20 UTC"
Работа с долями секунды
Корни вопроса идут от типовой задачи анализу логов. Для быстрых событий недостаточно секундного разрешения и тут появляются вариации. Время в логе может фиксироваться:
- по рекомендациям ISO, с долями секунд в виде дробной части (ISO 8601–2019);
- с какими-нибудь другими разделителями;
- как отдельное поле.
Объекты класса POSIXct
могут хранить и проводить вычисления с дробными секундами, но по умолчанию при выводе на печать дробные части округляются из-за чего могут возникнуть надуманные ограничения. Проверяем и смотрим:
x <- ymd_hms("2014-09-24 15:23:10")
x
x + 0.5
x + 0.5 + 0.6
options(digits.secs=5)
x + 0.45756
options(digits.secs=0)
x
## [1] "2014-09-24 15:23:10 UTC"
## [1] "2014-09-24 15:23:10 UTC"
## [1] "2014-09-24 15:23:11 UTC"
## [1] "2014-09-24 15:23:10.45756 UTC"
## [1] "2014-09-24 15:23:10 UTC"
Вернемся к логам, сформируем тестовый набор данных и посмотрим на различные варианты работы со временем.
options(digits.secs=5)
# generate data
df <- data.frame(
timestamp = as_datetime(
round(runif(20, min = now() - seconds(10), max = now()), 0),
tz ="Europe/Moscow")) %>%
mutate(ms = round(runif(n(), 0, 999), 0)) %>%
mutate(value = round(runif(n(), 0, 100), 0))
dput(df)
# сортируем "в лоб"
df %>%
arrange(timestamp, ms)
options(digits.secs=0)
## structure(list(timestamp = structure(c(1619698677, 1619698680,
## 1619698676, 1619698682, 1619698675, 1619698682, 1619698679, 1619698679,
## 1619698684, 1619698683, 1619698684, 1619698677, 1619698682, 1619698683,
## 1619698675, 1619698676, 1619698685, 1619698681, 1619698683, 1619698681
## ), class = c("POSIXct", "POSIXt"), tzone = "Europe/Moscow"),
## ms = c(418, 689, 729, 108, 226, 843, 12, 370, 5, 581, 587,
## 691, 102, 79, 640, 284, 241, 85, 329, 936), value = c(63,
## 44, 63, 45, 29, 34, 80, 85, 42, 76, 94, 89, 34, 80, 1, 66,
## 29, 81, 15, 98)), class = "data.frame", row.names = c(NA,
## -20L))
# "умное" преобразование
# [magrittr aliases](https://magrittr.tidyverse.org/reference/aliases.html)
df2 <- df %>%
mutate(timestamp = timestamp + ms/1000) %>%
# mutate_at("timestamp", ~`+`(. + ms/1000)) %>%
select(-ms)
df2 %>% arrange(timestamp)
# сравним подходы
dt <- as.data.table(df2)
bench::mark(
naive = dplyr::arrange(df, timestamp, ms),
smart = dplyr::arrange(df2, timestamp),
dt = dt[order(timestamp)],
check = FALSE,
relative = TRUE,
min_iterations = 1000
)
## # A tibble: 3 x 6
## expression min median `itr/sec` mem_alloc `gc/sec`
##
## 1 naive 11.9 11.8 1 1.06 1
## 2 smart 11.1 11.0 1.06 1 1.06
## 3 dt 1 1 11.6 494. 1.22
Парсинг данных с миллисекундами.
data <- c("05102019210003657", "05102019210003757", "05102019210003857")
dmy_hms(stri_c(stri_sub(data, to = 14L), ".", stri_sub(data, from = 15L)), tz = "Europe/Moscow")
# Измерение скорости различных вариантов
data2 <- data %>%
sample(10^6, replace = TRUE)
bench::mark(
stri_sub = stri_c(stri_sub(data2, to = 14L), ".", stri_sub(data2, from = 15L)),
stri_replace = stri_replace_first_regex(data2, pattern = "(^.{14})(.*)", replacement = "$1.$2"),
re2_replace = re2_replace(data2, pattern = "(^.{14})(.*)", replacement = "\\1.\\2", parallel = TRUE)
)
## [1] "2019-10-05 21:00:03 MSK" "2019-10-05 21:00:03 MSK"
## [3] "2019-10-05 21:00:03 MSK"
## # A tibble: 3 x 6
## expression min median `itr/sec` mem_alloc `gc/sec`
##
## 1 stri_sub 214ms 222ms 4.10 22.89MB 5.47
## 2 stri_replace 653ms 653ms 1.53 7.63MB 0
## 3 re2_replace 409ms 413ms 2.42 15.29MB 1.21
x <- ymd(20101215)
print(x)
class(x)
## [1] "2010-12-15"
## [1] "Date"
Магия lubridate
ymd(20101215) == mdy("12/15/10")
## [1] TRUE
df <- tibble(first = c("Иван", "Петр", "Алексей"),
last = c("Иванов", "Петров", "Сидоров"),
birthday_str = c("31-10-06", "2/4/2007", "1 June, 2005")) %>%
mutate(birthday = dmy(birthday_str))
df
А что делать, если время может поступать в частично обрезанном формате?
# управляем отображением форматов парсинга в lubridate
options(lubridate.verbose = TRUE)
# базовый формат даты: д.м.г
df <- tibble(time_str = c("08.05.19 12:04:56", "09.05.19 12:05", "12.05.19 23"))
lubridate::dmy_hms(df$time_str, tz = "Europe/Moscow")
print("---------------------")
lubridate::dmy(df$time_str, tz = "Europe/Moscow")
## [1] "2019-05-08 12:04:56 MSK" NA
## [3] NA
## [1] "---------------------"
## [1] NA NA NA
Разрешим вариативность определенной глубины
# управляем отображением форматов парсинга в lubridate
options(lubridate.verbose = TRUE)
lubridate::dmy_hms(df$time_str, truncated = 3, tz = "Europe/Moscow")
## [1] "2019-05-08 12:04:56 MSK" "2019-05-09 12:05:00 MSK"
## [3] "2019-05-12 23:00:00 MSK"
# управляем отображением форматов парсинга в lubridate
options(lubridate.verbose = TRUE)
# базовый формат даты: д.м.г
df <- tibble(date_str = c("08.05.19", "9/5/2019", "2019-05-07"))
Пробуем провести конвертацию
# пробуем первый вариант
glimpse(dmy(df$date_str))
print("---------------------")
# пробуем второй вариант
glimpse(ymd(df$date_str))
print("---------------------")
## Date[1:3], format: "2019-05-08" "2019-05-09" NA
## [1] "---------------------"
## Date[1:3], format: "2008-05-19" NA "2019-05-07"
## [1] "---------------------"
Что делать? Вариант, конечно, ужасен, но что-то можно поделать.
df %>%
mutate(date = dplyr::coalesce(dmy(date_str), ymd(date_str)))
df1 <- df
df1$date <- dmy(df1$date_str)
idx <- is.na(df1$date)
print("---------------------")
idx
df1$date[idx] <- ymd(df1$date_str[idx])
print("---------------------")
df1
## [1] "---------------------"
## [1] FALSE FALSE TRUE
## [1] "---------------------"
Еще пакеты на «посмотреть» и поизучать:
Разность
options(lubridate.verbose = FALSE)
date1 <- ymd_hms("2011-09-23-03-45-23")
date2 <- ymd_hms("2011-10-03-21-02-19")
# какова разница между этими датами?
as.numeric(date2) - as.numeric(date1) # как мы помним, разница в секундах
(date2 - date1) %>% dput()
difftime(date2, date1)
difftime(date2, date1, unit="mins")
difftime(date2, date1, unit="secs")
## [1] 926216
## structure(10.7200925925926, class = "difftime", units = "days")
## Time difference of 10.72009 days
## Time difference of 15436.93 mins
## Time difference of 926216 secs
Периоды
date1 <- ymd_hms("2019-01-30 00:00:00")
date1
date1 - days(1)
date1 + days(1)
date1 + days(2)
## [1] "2019-01-30 UTC"
## [1] "2019-01-29 UTC"
## [1] "2019-01-31 UTC"
## [1] "2019-02-01 UTC"
А теперь более сложный пример — добавляем месяцы
date1 - months(1)
date1 + months(1) # УПС!!!
## [1] "2018-12-30 UTC"
## [1] NA
Есть выход. Но операции не коммутативны, это надо помнить.
date1 %m-% months(1)
date1 %m+% months(1)
date1 %m+% months(1) %m-% months(1)
## [1] "2018-12-30 UTC"
## [1] "2019-02-28 UTC"
## [1] "2019-01-28 UTC"
Нюансы временных зон
date1 <- ymd_hms("2019-01-30 01:00:00")
date1 %T>% print() %>% dput()
with_tz(date1, tzone = "Europe/Moscow") %T>% print() %>% dput()
force_tz(date1, tzone = "Europe/Moscow") %T>% print() %>% dput()
## [1] "2019-01-30 01:00:00 UTC"
## structure(1548810000, class = c("POSIXct", "POSIXt"), tzone = "UTC")
## [1] "2019-01-30 04:00:00 MSK"
## structure(1548810000, class = c("POSIXct", "POSIXt"), tzone = "Europe/Moscow")
## [1] "2019-01-30 01:00:00 MSK"
## structure(1548799200, class = c("POSIXct", "POSIXt"), tzone = "Europe/Moscow")
Работа только с временЫми значениями
Что делать, если у нас есть только время, а даты не указаны? Не проблема, нам поможет пакет hms
. Такие данные представляются как периоды.
hms_str <- "03:22:14"
as_hms(hms_str)
dput(as_hms(hms_str))
print("-------")
x <- as_hms(hms_str) * 15
x
str(x)
# seconds_to_period(period_to_seconds(x))
seconds_to_period(x) %T>% dput() %>% print()
## 03:22:14
## structure(12134, units = "secs", class = c("hms", "difftime"))
## [1] "-------"
## Time difference of 182010 secs
## 'difftime' num 182010
## - attr(*, "units")= chr "secs"
## new("Period", .Data = 30, year = 0, month = 0, day = 2, hour = 2,
## minute = 33)
## [1] "2d 2H 33M 30S"
Одна из больших засад при работе с временнЫми данными в БД — неизвестность или неполная осведомленность о механике и логике работы конкретных таблиц. Не всегда есть возможность посмотреть запросы по которым они строились или же текст функций.
В современных БД (далее будем подразумевать Clickhouse) время, как правило, хранится как unixtimestamp в UTC. Ну или возможны иные варианты, но все они крутятся вокруг количества единиц времени относительно некоей реперной точки.
Потенциальные сложности и засады:
- При запросе у БД колонки времени под ее капотом может происходить масса метаморфоз. БД сериализует timestamp, при этом могут оказать свое влияние параметры временных зон из БД, ОС, поля, смежного поля, переменных окружения.
- При получении данных на клиентской стороне вмешивается драйвер (серия драйверов и врапперов). При развертывании времени замешивается логика драйверов, параметры локали ОС, языковые и временные параметры среды, значение переменных окружения и отражение лунного света в болоте.
- В поле unixtimestamp разработчики могут помещать отнюдь не UTC время, а московское. Или иное (сюрприз!).
- В БД может быть агрегация и партиционирование по дате, вычисляемой на основании поля timestamp. В силу расхождения в трактовке временных зон, данные за день
Х
вполне могут уехать в партицииX-1
илиX+1
, что необходимо учитывать при построении быстрого запроса к БД.
В общем, вероятность получить предсказуемый результат в любой произвольной среде исполнения близок к 0.
Чтобы избежать этого и параллельно получить еще массу преимуществ достаточно перейти на ручное управление.
Суть заключается в переводе дат в числовой формат на стороне базы и обратное преобразование во время (там, где надо) на стороне клиента. Такое решение не сильно обременительно, зато дает дает массу преимуществ:
- полный контроль реальных временнЫх меток на всех этапах, включая выявлении косяков разработчиков и специфики настройки БД;
- возможность сверки реально получаемы показателей с ожидаемыми;
- прецизионное управление временными зонами для корректной трактовки;
- корректное преобразование времени в даты (с учетом таймзон);
- схождение суточных агрегатов;
- возможность интеграции дробных долей секунд в единый
double
; - сокращение временнЫх затрат на сериализацию и передачу по сети;
- общее увеличение производительности.
Трюк по экономии памяти и времени исполнения без потери информации
-- диалект ClickHouse
SELECT DISTINCT
store, pos,
timestamp, ms,
concat(toString(store), '-', toString(pos)) AS pos_uid,
toFloat64(timestamp) + (ms / 1000) AS timestamp
flog.info(paste("SQL query:", sql_req))
tic("Загрузка из CH")
raw_df <- dbGetQuery(conn, stri_encode(sql_req, to = "UTF-8")) %>%
mutate_if(is.character, `Encoding<-`, "UTF-8") %>%
as_tibble() %>%
mutate_at(vars(timestamp), anytime::anytime, tz = "Europe/Moscow") %>%
mutate_at("event", as.factor)
flog.info(capture.output(toc()))
DBI::dbDisconnect(conn)
Хелпер для детального анализа занимаемой data.frame
памятью
# сводка по объемам данных
df -> as_tibble(_df) %>%
map(pryr::object_size) %>%
unlist() %>%
enframe() %>%
arrange(desc(value)) %>%
mutate_at("value", fs::as_fs_bytes) %>%
mutate(ratio = formattable::percent(value / sum(value), 2)) %>%
add_row(name = "TOTAL", value = sum(.$value))
Повторно полезные ссылки по форматам и калькуляторам, необходимым при анализе путей следования дат в ИС и БД
При отображении графиков, подготовке текстов, группировке временных интервалов, преобразовании текста даты и подобное часто требуетя выдать или распознать дату в хитром виде. Ниже ряд подходов и функций.
Привязка к рабочим неделям
df <- seq.Date(from = as.Date("2021-01-01"),
to = as.Date("2021-05-31"),
by = "2 days") %>%
# sample(20, replace = FALSE) %>%
tibble(date = .)
# формируем композитное представление год/месяц/номер недели
# способ 1
df %>%
mutate(month_num = stri_c(lubridate::year(date),
sprintf("%02d", lubridate::month(date)),
sep = "/"),
week_num = stri_c(lubridate::isoyear(date),
sprintf("%02d", lubridate::isoweek(date)),
sep = "/")
)
# формируем композитное представление год/месяц/номер недели
# способ 2, заодно добавим день недели
# особое внимание обращаем, что текстовые поля генерятся согласно текущей локали!!!
df %>%
mutate(month_num = format(date, "%Y/%m (%a) ISO week %V"))
# формируем композитное представление год/месяц/номер недели
# способ 3, заодно добавим день недели
# хелпер по преобразованию формата strptime (ISO 8601) в ICU
# https://man7.org/linux/man-pages/man3/strptime.3.html
stri_datetime_fstr("%Y/%m (%a) week %V")
# ggthemes::tableau_color_pal("Tableau 20")(20) %>% scales::show_col()
# особое внимание обращаем, что мы можем управлять локалью самостоятельно!!!
df %>%
mutate(
month_num_ru = stri_datetime_format(
date, "yyyy'/'MM' ('ccc') week 'ww", locale = "ru", tz = "UTC"),
month_num_en = stri_datetime_format(
date, "yyyy'/'MM' ('ccc') week 'ww", locale = "en", tz = "UTC"))
Дни недели
Пишем дни недели в различных локалях. Не зависит от платформы исполнения.
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Persian")
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Indian")
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Hebrew")
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Islamic")
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Coptic")
stri_datetime_format(today(), "LLLL", locale="ru@calendar=Ethiopic")
stri_datetime_format(today(), "dd MMMM yyyy", locale="ru")
stri_datetime_format(today(), "LLLL d, yyyy", locale="ru")
## [1] "ордибехешт"
## [1] "ваисакха"
## [1] "ияр"
## [1] "рамадан"
## [1] "бармуда"
## [1] "миазия"
## [1] "29 апреля 2021"
## [1] "апрель 29, 2021"
Собственное форматирование дат по осям графиков
Иногда возникает необходимость собственного форматирования меток осей. Ниже пример по созданию такой функции
# сгенерируем тестовые данные
map_tbl <- tibble(
date = as_date(Sys.time() + rnorm(10^3, mean = 0, sd = 60 * 60 * 24 * 7))) %>%
mutate(store = stri_c(sample(c("A", "F", "Y", "Z"), n(), replace = TRUE),
sample(101:105, n(), replace = TRUE))) %>%
mutate(store_fct = as.factor(store)) %>%
mutate(fail_ratio = abs(rnorm(n(), mean = 0.3, sd = 1)))
my_date_format <- function (format = "dd MMMM yyyy", tz = "Europe/Moscow")
{
scales:::force_all(format, tz)
# stri_datetime_fstr("%d.%m%n%A")
# stri_datetime_fstr("%d.%m (%a)")
function(x) stri_datetime_format(x, format, locale = "ru", tz = tz)
}
# такой же график, но в развертке по горизонтали
gp <- map_tbl %>%
ggplot(aes(x = date, y = store_fct, fill = fail_ratio)) +
geom_tile(color = "white", size = 0.1) +
# scale_fill_distiller(palette = "RdYlGn", name = "Fail Ratio", label = comma) +
# scale_fill_distiller(palette = "RdYlGn", name = "Fail Ratio", guide = guide_legend(keywidth = unit(4, "cm"))) +
scale_fill_distiller(palette = "RdYlGn", name = "Fail Ratio") +
scale_x_date(breaks = scales::date_breaks("1 week"), labels = my_date_format("dd'.'MM' ('ccc')'")) +
coord_equal() +
labs(x = NULL, y = NULL, title = "Средний % сбоев по дням") +
theme_minimal() +
theme(plot.title = element_text(hjust = 0)) +
theme(axis.ticks = element_blank()) +
theme(axis.text = element_text(size = 7)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) +
theme(legend.position = "bottom") +
theme(legend.key.width = unit(3, "cm"))
gp
Простая математика
Создадим тестовый набор записей
base_df <- tibble(
start = Sys.time() + rnorm(10^3, mean = 0, sd = 60 * 24 * 3)) %>%
mutate(finish = start + rnorm(n(), mean = 100, sd = 60)) %>%
mutate(user_id = sample(as.character(1000:1100), n(), replace = TRUE)) %>%
arrange(user_id, start)
dt <- as.data.table(base_df, key = c("user_id", "start")) %>%
.[, c("start", "finish") := lapply(.SD, as.numeric),
.SDcols = c("start", "finish")]
df <- group_by(base_df, user_id)
bench::mark(
dplyr_v1 = df %>% transmute(delta_t = as.numeric(difftime(finish, start, units = "secs"))) %>% ungroup(),
dplyr_v2 = ungroup(df) %>% transmute(delta_t = as.numeric(difftime(finish, start, units = "secs"))),
dplyr_v3 = dt %>% transmute(delta_t = finish - start),
dt_v1 = dt[, .(delta_t = finish - start), by = user_id],
dt_v2 = dt[, .(delta_t = finish - start)],
check = FALSE # all_equal работает более корректно
)
## # A tibble: 5 x 6
## expression min median `itr/sec` mem_alloc `gc/sec`
##
## 1 dplyr_v1 4.3ms 4.86ms 200. 103.1KB 11.4
## 2 dplyr_v2 2.17ms 2.46ms 380. 17.9KB 6.24
## 3 dplyr_v3 1.67ms 1.77ms 527. 29.8KB 8.51
## 4 dt_v1 410.4us 438.7us 2139. 90.8KB 8.35
## 5 dt_v2 304.4us 335.3us 2785. 264.6KB 8.38
У меня данные хранятся в формате год/месяц/число. Мне не все нужны, а только суббота, как мне отфильтровать?
# https://stackoverflow.com/questions/16347731/how-to-change-the-locale-of-r
# https://jangorecki.gitlab.io/data.cube/library/stringi/html/stringi-locale.html
df <- as.Date("2020-01-01") %>%
seq.Date(to = . + months(4), by = "1 day") %>%
tibble(date = .) %>%
mutate(wday = lubridate::wday(date, week_start = 1),
wday_abb_rus = lubridate::wday(date, label = TRUE, week_start = 1),
wday_abb_enu = lubridate::wday(date, label = TRUE, week_start = 1, locale = "English"),
wday_stri = stringi::stri_datetime_format(date, "EEEE", locale = "en"))
# оставим только субботы
filter(df, wday == 6)
Предыдущая публикация — «R vs Python в продуктивном контуре».