Как приручить демона Максвелла

Второе начало термодинамики — это один из фундаментальных физических законов, который никогда не нарушается в закрытых системах (по крайней мере, в макромире). Замечательную статью, описывающую современные представления о втором начале термодинамики, написал на Хабре уважаемый @dionisdimetor, но в целом второе начало термодинамики сводится к трём аспектам:

1)      Энтропия в закрытой системе не может убывать

2)      Любую энергию невозможно на 100% преобразовать в работу — часть энергии теряется виде теплоты

3)      Тепло не может самопроизвольно перетекать от более холодного тела к более тёплому; иными словами, если вы дотронетесь рукой до горячего чайника, то обожжётесь, а не поднимете температуру чайника, «подогрев» его теплом вашей ладони.  

В середине XIX века в индустриальной Англии подробно изучалась связь теплоты и работы, а также передача теплоты в жидкостях и газах. На фоне этих событий в 1860-е годы знаменитый физик Джеймс Клерк Максвелл заинтересовался, существуют ли лазейки, позволяющие обойти второе начало термодинамики, и придумал знаменитый парадокс под названием «демон Максвелла».  

a31a493529266f670f64e53e4e489980.gif

В классической физике теплота — это скорость движения молекул в веществе. Чем выше средняя скорость молекул в газе, тем выше его температура и, как оказалось впоследствии, тем выше энтропия газовой смеси. Максвелл задумался, можно ли искусственно регулировать тепловой градиент в системе, разделив некую ёмкость заслонкой. Открывать и закрывать эту заслонку должен «вахтёр», которого вскоре окрестили «демоном Максвелла». Демон измеряет скорость каждой из молекул, и быстрые молекулы пропускает через заслонку только быстрые молекулы, а медленные — не пропускает. Если заменить демона или заслонку умной мембраной, которая считывает скорость каждой проходящей через неё молекулы, и некоторые молекулы блокирует по принципу, напоминающему осмос в живой клетке, то, может быть, удастся сконструировать машину, работающую по принципу демона Максвелла?

Сразу оговорюсь, что второе начало термодинамики в данном случае нарушаться не будет, так как самому демону для работы понадобится приток энергии извне. Подробнее о нерушимости второго начала в такой ситуации рассказано здесь. Тем не менее, подобная машина не только позволяла бы целенаправленно снижать энтропию (превращать омлет в яйца), но и извлекать полезную работу из окружающей тепловой энергии, и отматывать время вспять.

bb00983119b0156a6d7ef64fe32ac47c.png

В таком случае второе начало термодинамики удалось бы преодолевать локально (в пределах действия машины) и превращать в полезную работу любой температурный градиент, извлекать энергию просто из воздуха, где всегда существует циркуляция молекул. Например, можно было бы подзаряжать аккумулятор (скажем, мобильный телефон) из воздуха, либо отматывать события в прошлое, восстанавливая их последовательность. В данном случае порядок можно отождествить с полезностью, а беспорядок — с бесполезностью, либо, соответственно, с информативностью и неинформативностью.  Далее подробнее обсудим свойства классической модели с привлечением демона Максвелла, а также её развитие и варианты в квантовом и биохимическом контексте, а также применительно к уже удавшимся опытам с бозонными конденсатами.  

Как классический демон Максвелла может выполнять полезную работу

Итак, в классическом мысленном эксперименте демон Максвелла решает, поднимать ли заслонку, когда к перемычке между отсеками подлетает очередная молекула. Для сохранения температурного градиента демон должен пропускать на «тёплую» половину только самые быстрые, а значит — высокоэнергетические молекулы. Демон мог бы работать и по другому принципу — следить, не преодолевает ли молекула некоторый энергетический предел, и только при условии такого превышения открывать перед ней заслонку. В таком случае на границе между «тёплым» и «холодным» отсеком можно было бы поставить «турбину», которая преобразовывала бы тепловую энергию в электрическую и, например, подзаряжала аккумулятор.

43e2bf66470ffad275098d42d8f12f98.jpg

В 2022 году группа под руководством Антуана Нерта из Высшей нормальной школы в Лионе предложила удивительный аппарат, функционально подобный макроскопическому демону Максвелла.  Сами исследователи назвали его «броуновским храповиком». Устройство представляет собой прозрачную ёмкость из звуконепроницаемого стекла, расположенную на вибрирующей платформе. Внутри сосуда постоянно встряхиваются и перемешиваются примерно 300 стальных шариков. В центре сосуда видна подвижная лопасть, которая свободно поворачивается в любом направлении под ударами шариков. Лопасти подведены к генератору электрического тока, но, поскольку это храповик, генератор работает, только когда лопасть проворачивается в нужном направлении. Генератор питает мотор. Соответственно, получившееся устройство напоминает демона Максвелла в том, что преобразует хаотическое движение шариков в упорядоченное движение храповика. Чисто теоретически вообще странно, что двигатель Нерта работает, но, оказывается, статистика в его пользу: даже когда частицы размером с дробинку находятся в «броуновском» движении, система может превращать работу в энергию. Если же частицы будут микроскопическими, то есть, если заменить дробинки на молекулы и атомы, то статистически «демон» будет ещё более работоспособен.

На примере машины Нерта можно убедиться, что демон Максвелла не нарушает второго закона термодинамики. С другой стороны, у машины Нерта есть несколько ключевых отличий от «классического» демона Максвелла. Во-первых, чтобы сортировать молекулы газа, демон должен быть холоднее самого газа. Во-вторых, по самому условию эксперимента, молекулы газа должны иметь разную температуру. В машине Нерта «разница температур» возникает между дробинками, которые отдают часть энергии лопастям и «остывают».

Двигатель Силарда под управлением демона Максвелла

Возвращаясь к работам уважаемого @dionisdimetor на Хабре, отмечу его статью «Информация об информации. Энтропия Шеннона, демон Максвелла и предел Ландауэра». Эта статья указывает на тождество между «тепловой» энтропией Больцмана и «информационной» энтропией Шеннона. В сущности, это разные грани одного и того же явления. В 1929 году знаменитый физик Лео Силард, размышляя над парадоксом, указал, что демон Максвелла может пропустить (или не пропустить) частицу за заслонку лишь после того, как измерит скорость этой частицы, а акт измерения и запоминания увеличивает информационную энтропию. Поэтому, хотя термодинамическая энтропия и снижается, суммарная энтропия в закрытой системе продолжает расти. 

60174f364652e8430427623d6c68e311.png

В версии Силарда в эксперименте с демоном Максвелла оставлена пустая ёмкость всего с одной частицей, которая движется случайным образом. Демон управляет заслонкой и следит за движением частицы. В состоянии покоя частица находится в центре коробки, но, если толкнуть коробку слева, то частица сдвинется вправо — и наоборот. Тем временем, демон разделяет коробку заслонкой и проверяет, по какую сторону от заслонки — слева или справа — оказалась частица. Если частица оказалась слева, то демон подвешивает грузик к левому краю коробки (например, на струне), и за счёт этого тот край коробки, который пошёл вниз, может совершить полезную работу.

011e24dd0525808d848584b7379efc78.png

Таким образом, если считать вес частицы и вес коробки близкими к нулю, можно предположить, что демон Максвелла извлекает полезную работу на основании одной только информации о положении частицы. Подобная модель позволяет объединить больцмановскую и шенноновскую трактовку энтропии. Но нарушается ли при этом второе начало термодинамики?

Нет, и здесь мы подходим к принципу Ландауэра, рассмотренному в вышеупомянутой статье @dionisdimetor и сформулированному в 1961 году Рольфом Ландауэром. Чтобы многократно извлекать энергию вышеописанным способом, демону приходится затирать в памяти старую информацию новой. Причём, если демон иногда будет ошибаться и подвешивать грузик не к тому краю коробки, то энергия будет теряться, а не вырабатываться. Если бы память демона не очищалась после каждой операции, то он угадывал бы положение частицы чисто статистически, и полезную работу выполнять бы не мог. А на операции с памятью демона затрачивается энергия — поэтому, хотя, демон и снижает энтропию в ёмкости, общая энтропия в системе должна возрастать.

В 1987 году инженер IBM Чарльз Беннет, опираясь на работу Ландауэра, опубликовал статью «Demons, Engines and the Second Law» («Демоны, двигатели и второй закон») доказал неправоту Силарда, продемонстрировав, что измерения можно производить, и не расплачиваясь за них увеличением энтропии. Он задумался, как именно демон хранит информацию в памяти.

Память демона можно представить как набор монет, и все они находятся в положении «решка». Демон измеряет скорость очередной частицы, относит эту частицу к «быстрым», и задействует при этом монету, которая в таком случае не переворачивается, а остаётся лежать решкой. Напротив, если частица будет сочтена «медленной» и не произведёт полезной работы, монета перевернётся «орлом». Одна частица — одна монета, и, когда все монеты будут соотнесены с частицами (актами измерения скорости частиц), демон вновь перевернёт все их решкой вверх.

Поскольку известно, что биологические системы эффективно снижают энтропию, в последние годы предпринимались попытки реализовать двигатель Силарда на биохимическом материале. «Выбор» демона сводится к тому, что в системе происходит одна или другая химическая реакция. В 2019 году соорудить такую систему удалось Томасу Олдриджу, Рори Бриттену и Нику Джонсу из Имперского колледжа Лондона в коллаборации с Питером Рином тен Вольде из амстердамского Института фундаментальных исследований материи (FOM).

Биохимический двигатель Силарда

В рассмотренной выше «информационной» вариации демона Максвелла очень важно учесть акт измерения и обратную связь в результате измерения. Олдридж с коллегами предположили, что задачи демона Максвелла могут фиксироваться как результаты химических реакций.

Компоненты двигателя


В биохимическом двигателе Силарда можно выделить две основные составляющие:

1. Объём с реагирующими веществами состоит из двух видов молекул: D (данные) и M (память). Обе они могут находиться в двух состояниях (D0 и D1, M0 и M1).   

2. Ряд химических буферов, в которых содержатся «горючие» молекулы в целом диапазоне концентраций. Эти буферы выполняют роль «банка» низкой энтропии, и вещества из них могут либо тратиться, переводя объём с реагирующими веществами в определённое состояние, либо «пополняться» за счёт идущей реакции. Такая «батарея» подобна «грузу» из исходной силардовской формулировки демона Максвелла, которую мы обсудили выше.  .

Этапы измерения и обратной связи


Молекулы M (память) могут взаимопревращаться между состояниями M0 и M1, реагируя с горючими молекулами. Однако при отсутствии катализатора такая реакция реакция идёт очень медленно, а в качестве катализатора выступают молекулы данных, D. При этом очень важно, что молекулы D0 и D1 катализируют разные реакции, приводя к связыванию молекул M с разными горючими молекулами. Именно от складывающегося дисбаланса концентраций этих веществ зависит, в каком направлении пойдут реакции: катализатор D0 толкает M к превращению в M0, а D1 — соответственно, ведёт M к M1.

Исходно система может находиться в одном из четырёх сочетаний D и M, при этом, горючие молекулы в смеси отсутствуют. Затем в объём с реагирующей смесью медленно подмешиваются вещества из заполненных буферов. Состояния M и D коррелируют и, как показал опыт, постепенно в системе остаётся всего два вида молекул из четырёх исходных.

Термодинамический анализ смеси показывает, что, точно, как и полагал Силард, на этапе измерения ресурсы действительно расходуются. Энтропия в реагирующем объёме снижается (два вида молекул дают более низкую энтропию, чем четыре), но только за счёт возрастания энтропии в буферах с «топливом».

Обратная связь заключается в отделении M от тех веществ, которые служили топливом на этапе измерения, для этого в смесь подмешиваются реагенты из другого набора буферов.

В данном случае принципиально важно, что состав смеси развивается в сторону снижения энтропии без участия какого-либо разумного «демона», по строго статистическим и вероятностным трекам. Поэтому неудивительно, что в настоящее время исследуются и квантовые варианты двигателя Силарда (демона Максвелла), ведь в квантовом мире все процессы и события имеют вероятностную природу.

Квантовый двигатель Силарда

В первую очередь упомяну об опыте, поставленном в 2018 году коллаборацией из МФТИ, Высшей технической школы Цюриха и Аргоннской национальной лаборатории в США. Учёным удалось собрать квантовую систему на кубитах, которая локально обходит второй закон термодинамики под действием ещё одного кубита, который выступает в качестве демона Максвелла и расположен на расстоянии от одного до пяти метров от запутанной системы (по квантовым меркам) это очень большое расстояние.  

Руководитель группы Андрей Лебедев, на момент описываемых событий совмещавший работу в МФТИ и Цюрихе указывает, что перед каждым взаимодействием демона нужно «инициализировать» (подготовить) к взаимодействию с квантовой системой. На такую подготовку тратится время и энергия — соответственно, возрастает энтропия. Поэтому глобально второе начало термодинамики не нарушается, но демон Максвелла всё равно оказывается работоспособен.

В этом исследовании в качестве демона Максвелла и объекта, на который он воздействует, используются сверхпроводящие «искусственные атомы». Исходно такие «атомы» были получены в рамках другого проекта, связанного с разработкой квантового магнетометра. Устройство состоит из тонкой алюминиевой плёнки, напылённой на кремниевый чип. При температурах, близких к абсолютному нулю, такая структура действительно напоминает по свойствам атом и может находиться в двух базовых состояниях: основном и возбуждённом. С вычислительной точки зрения каждая такая единица является кубитом.

Но кубит, как и любая квантовая единица, подчиняется принципу неопределённости Гейзенберга, поэтому, пока на него ничто не воздействует, он находится в суперпозиции обоих состояний. Суперпозиция несводима ни к одному из тех состояний, которые её слагают, соответственно, нахождение в суперпозиции характеризуется меньшей степенью энтропии, чем нахождение в одном из двух состояний. После того, как кубит с чем-либо провзаимодействует, суперпозиция нарушится, и атом окажется в одном из двух состояний. Энтропия возрастёт.  

В качестве демона Максвелла в этом опыте используется другой атом-кубит, соединённый с первым через кабель, по которому передаются сигналы в микроволновом диапазоне. Когда между кубитом-демоном и кубитом-объектом установлена связь, они могут обмениваться квантами микроволнового излучения и, следовательно, переключаться из одного состояния в другое.

Атом-объект может находиться в состояниях, которые в рамках этого эксперимента были условно названы «нечистыми» (повышенная энтропия) или «чистыми» (пониженная энтропия). Опыт показал, что, если искусственно ввести атом-демон в «чистое» состояние, то он может переводить атом-объект из «нечистого» в «чистое» состояние с равной энергией, тем самым снижая его энтропию, выводя избыток энтропии из той системы, к которой подключён демон. Демон может оставаться на связи не только с отдельным атомом, но и с совокупностью отдельных атомов, которая по агрегатному состоянию напоминает конденсат Бозе-Эйнштейна. Побочный эффект такого обмена «энергии на энтропию» заключается в том, что смесь, с которой взаимодействует демон, остаётся очень холодной, что необходимо для работы современных квантовых компьютеров. Второе начало термодинамики в таком опыте не нарушается, но становится управляемым.

Заключение

Как было показано в этой статье, двигатель Силарда действительно может работать, не нарушая второго начала термодинамики, и может быть реализован как на биохимическом, так и на квантовомеханическом носителе. Интересно, что сам Силард, придумав эту машину, считал её пусть и микроскопической, но действующей по законам классической, а не квантовой физики. Для конструирования систем, управляемых по принципу демона Максвелла, все происходящие в них взаимодействия (демона с частицами и частиц со средой) должны быть унитарными, то есть, обратимыми. Готовя эту статью, я обнаружил удивительные разработки Марии Виоларис, аспирантки Оксфордского университета, которая моделирует на Python различные квантовые парадоксы и выкладывает их у себя на Github в виде ноутбуков Jupyter. Предложенная ей реализация демона Максвелла находится здесь.

Таким образом, демон Максвелла, начинавшийся как любопытный мысленный эксперимент, является реальным рецептом не для нарушения второго начала термодинамики, а для локального управляемого снижения энтропии за счёт её повышения за пределами зоны эксперимента. Однако, уже в нынешнем представлении такие эксперименты позволяют усовершенствовать работу квантовых компьютеров (дольше поддерживать кубиты в рабочем состоянии), прицельно заключать отдельные атомы в наноразмерные холодильные камеры, а также обращать вспять энтропию системы, что может сыграть ключевую роль при восстановлении данных.  

© Habrahabr.ru