Инсулин. Как ГМО спасает миллионы жизней

bfbdc851a639e0f56f818c282cf98598.jpeg

Инсулин, незаменимый медикамент для 4,6–9 миллионов россиян, по официальным данным. Уже почти 50 лет, благодаря технологиям редактирования генома, он доступен практически каждому диабетику. И позволяет им жить практически нормальной жизнью. Однако так было не всегда. Как жили диабетики до появления генно-инженерного инсулина? Как было найдено решение проблемы нехватки лекарства и через какой путь прошла технология?

Инсулин из мясной лавки

В 1921 году молодой хирург Фредерик Бантинг и его ассистент Чарльз Бест выяснили, как извлечь инсулин из поджелудочной железы собаки. Скептически настроенные коллеги называли эту субстанцию «густой коричневой грязью», но они и не подозревали, что это даст надежду для миллионов людей с диабетом. Бантинг был не первым, кто искал антидиабетический секрет поджелудочной железы — это было частью становления эндокринологии как науки, — и уже тогда были доказательства, связывающие этот орган с диабетом. Даже термин «инсулин» был придуман задолго до этого, хотя само вещество оставалось неуловимым. При этом ни Бантинг — практикующий врач, представивший свой план физиологу из Университета Торонто Дж. Дж. Р. Маклеоду, ни студент-медик Чарльз Бест, назначенный Маклеодом для помощи Бантингу, не были опытными исследователями-физиологами. 

С помощью полученной мутной субстанции Бантинг и Бест смогли продлить жизнь другой собаке с тяжёлым диабетом на 70 дней: животное погибло только тогда, когда экстракт закончился. Начав свои эксперименты в мае 1921 года, они получили обнадёживающие результаты, вводя экстракты поджелудочной железы диабетическим животным. В декабре Маклеод пригласил в команду приезжего биохимика Джеймса Б. Коллипа. Он значительно улучшил чистоту экстрактов, и к январю 1922 года клинические исследования показали несколько признаков положительного воздействия экстракта, включая снижение уровня сахара в крови пациентов. Интерес к этой работе и запросы на инсулин начали расти ещё до первой публикации Бантинга и Беста в феврале 1922 года.

Группа планировала расширить использование экстракта для диабетиков, но масштабное производство в университетских лабораториях оказалось проблематичным. Университет Торонто обратился за помощью к компании Eli Lilly and Company из Индианаполиса, чьи представители предложили сотрудничество после презентации команды на научной конференции в декабре 1921 года. К маю 1922 года университет и компания заключили соглашение о сотрудничестве, и благодаря инженерным изменениям компании производство возросло настолько, что к концу лета исследования могли быть расширены на многие клиники.

79430d39b68561a6e3a2ddf0527657b2.png

В январе 1922 года Леонард Томпсон, 14-летний мальчик, умираюший от диабета в одной из больниц Торонто (Dr. Campbell’s, Toronto General Hospital), стал первым человеком, получившим инъекцию инсулина. В течение 24 часов уровень сахара в его крови, который был опасно высоким, снизился до почти нормальных значений.

7cdf58710fcf1dde046e951d9b1537d0.png

Новость об инсулине разлетелась по всему миру словно лесной пожар. В 1923 году Бантинг и Маклеод получили Нобелевскую премию по медицине, которую они разделили с Бестом и Коллипом. 

Вскоре после этого медицинская фирма Eli Lilly начала массовое производство инсулина. Позднее его стало достаточно для снабжения всей Северной Америки.

Первый коммерческий инсулин компании Eli Lilly, препарат «iLetin», 1923 год.

Первый коммерческий инсулин компании Eli Lilly, препарат «iLetin», 1923 год.

В последующие десятилетия производители разработали множество видов инсулина с более медленным действием, первый из которых был представлен компанией Novo Nordisk Pharmaceuticals, Inc. в 1936 году.

Аналитическая лаборатория Eli Lilly, 1932 год.

Аналитическая лаборатория Eli Lilly, 1932 год.

Микробы спешат на помощь

Но были у подобного метода и недостатки, самый банальный — цена. Потребность человечества во вкусных стейках из говядины и свиных сосисках косвенно удовлетворяла и потребность в поджелудочных железах животных, из которых можно было бы извлечь инсулин. Однако, поджелудочная — орган достаточно небольшой, ещё и присутствующий в количестве одной штуки. И инсулин сам по себе оттуда не выльется, его нужно извлекать, соблюдая уровень температуры и кислотности среды, ведь инсулин — это всё-таки белок, и относительно нежный, поэтому требуется осторожность. К тому же, нужно было не только не разрушить вещество, но и очистить его от других компонентов, содержащихся в поджелудочной железе, а тем более от патогенных бактерий. 

Фото с завода Eli Lilly & Co. Слева: поджелудочные железы распаковываются после доставки с мясокомбината. Справа: их пропускают через мясорубку для дальнейшего извлечения инсулина.

Фото с завода Eli Lilly & Co. Слева: поджелудочные железы распаковываются после доставки с мясокомбината. Справа: их пропускают через мясорубку для дальнейшего извлечения инсулина.

Всё вместе это приводило к тому, что инсулин был куда менее доступным, чем сегодня, а также к тому, что масштабирование производства сдерживалось количеством доступного вторсырья от мясной промышленности. Для понимания: соотношение конечного продукта к сырью было примерно 1 к 8, требовалось 3600 килограммов поджелудочных желёз от 23 500 коров и свиней для производства всего лишь 450 килограммов инсулина. Этого объёма хватило бы на год для 750 больных диабетом.

Вам, вероятно, пришло на ум одно из решений проблемы: если диабетикам постоянно нужен инсулин, так почему бы не прибегнуть к трансплантологии? К сожалению, тут всё не так просто, даже если отбросить громадные очереди на донорские органы, необходимость совместимости, потребность в иммуноподавляющей терапии и прочие переменные — это просто не помогло бы диабетикам. Одна из основных причин диабета первого типа — это аутоиммунная реакция на клетки собственной поджелудочной железы. То же самое произошло бы и со здоровой, но уже пересаженной поджелудочной железой.

Впрочем, трансплантация ещё сыграет свою роль в этой истории, к счастью для всех диабетиков, удивлению всех скептиков и недовольству зарабатывающих на страхе перед технологиями: люди научились пересаживать гены.

Профессор Герберт Бойер, один из создателей первой трансгенной ДНК и первого трансгенного организма, 1973 год.

Профессор Герберт Бойер, один из создателей первой трансгенной ДНК и первого трансгенного организма, 1973 год.

В 1973 году Полом Бергом, Гербертом Бойером, Энни Чанг и Стэнли Коэном из Стэнфордского университета и Калифорнийского университета в Сан-Франциско была создана первая трансгенная (модифицированная) ДНК и первый трансгенный организм — конечно же, это была E.coli, она же кишечная палочка. А уже в 1975 году на «Конференции в Асиломаре» обсуждались вопросы регулирования и безопасного использования технологий рДНК (рекомбинантной ДНК). Парадоксально, но методы рекомбинантной ДНК для развития сельского хозяйства и создания лекарственных препаратов заняли больше времени, чем ожидалось специалистами того времени.

К счастью, в 1978 году эта борьба была ещё не в таком разгаре, как ныне, разработка биотехнологических препаратов не обходилась в среднем в миллиард долларов и не тянулась по 10+ лет. 

Учёные, участвовавшие в проекте по созданию инсулина, 1978 год. Слева направо: К. Итакура, А.Д. Риггс, Д.В. Гёддел и Р. Креа.

Учёные, участвовавшие в проекте по созданию инсулина, 1978 год. Слева направо: К. Итакура, А.Д. Риггс, Д.В. Гёддел и Р. Креа.

Рекомбинантный человеческий инсулин был впервые произведен с помощью кишечной палочки компанией Genentech в 1978 году, с использованием подхода, который требовал экспрессии химически синтезированной хромосомной ДНК человека, кодирующей цепи A и B инсулина, отдельно в E. coli. После независимой экспрессии две цепи очищали и совместно обрабатывали при особых условиях реакции, что способствовало соединению их в цельную молекулу инсулина благодаря формированию дисульфидных связей. 

Деннис Клайд и его коллега в лаборатории молекулярной биологии. Фото из архива Genentech.

Деннис Клайд и его коллега в лаборатории молекулярной биологии. Фото из архива Genentech.

В другом подходе применяют экспрессию единственной химически синтезированной хромосомной ДНК, кодирующей человеческий проинсулин, в E. coli с последующей очисткой и последующим удалением С-пептида путём протеолитического расщепления. Этот метод эффективнее и удобнее для крупномасштабного производства терапевтического инсулина по сравнению с методом комбинирования двух цепей, и коммерчески использовался с 1986 года. Eli Lilly использовала эту технологию для производства Humulin, первого рекомбинантного инсулина, одобренного в 1982 году для лечения диабетиков. 

Наши дни

Дрожжевая закваска для хлеба.

Дрожжевая закваска для хлеба.

Как нетрудно догадаться, у производства инсулина бактериями есть один существенный недостаток: он производится не сразу, а по частям, в виде двух цепей, которые далее необходимо сшить. Но при этом клетками человека он производится сразу в нужном виде. В чём же дело?

Дело всё в том, что люди — эукариоты, а кишечная палочка — бактерия, и наши механизмы экспрессии белка достаточно сильно различаются. В случае с инсулином самое важное для нас то, что мы, эукариоты, любим пост-трансляционные модификации белка. А именно, упомянутую дисульфидную связь, благодаря которой две цепи сшиваются в инсулин. Бактерии же зачастую не особо любят подобным заморачиваться.

Поэтому уже с 1980-х наиболее популярным производителем трансгенного инсулина стал эукариотический организм — Saccharomyces cerevisiae. Говоря по-русски, пивные дрожжи. С одним лишь отличием: в них добавили идентичный, либо модифицированный для большей степени метаболизации или скорости действия, человеческий ген, производящий инсулин.

Впрочем, на этом наука не остановилась: в ход шли и растения, и другие бактерии и эукариоты. А также развиваются и новые методы лечения — генотерапия и иммунотерапия диабета, что, возможно, устранят надобность в инъекциях навсегда. 

© Habrahabr.ru