[Из песочницы] Управление сервоприводом SG90 без микроконтроллера
Попался под руку популярный недорогой сервопривод SG90. И задумалось управлять им, но без микроконтроллера. В этой статье я изложу ход мыслей разработчика при реализации одного из вариантов решения.
Кому интересно, прошу под кат.
Идея
Надо управлять сервоприводом, но без микроконтроллера.
Знания
Всем известно, что опыт и знания помогают творить и находить решения. На страницах Гиктаймса немало примеров использования сервопривода с применением контроллеров. В них подробно рассказано про систему управления сервоприводом. Примем этот опыт других разработчиков за знания необходимые нам для решения задачи. Сервопривод SG90 управляется ШИМ сигналом, параметры которого определяют положение ротора. Период ШИМ около 20 мС, длительность сигнала управления от 500 до 2100 мкС.
Задача
Идея и знания порождают задачу, которую необходимо решить. Сформулируем задачу для воплощения идеи. Это что-то вроде Технического Задания. Кажется, все просто, надо взять генератор импульсов с изменяемой скважностью, подключить питание к сервоприводу, а с генератора подать управляющий сигнал. Особо отметим, что в требованиях есть изменения скважности — то есть должны быть органы управления или пользовательский интерфейс.
Реализация
Вот тут и начинаются муки творчества: что взять и где взять? Можно найти готовый лабораторный импульсный генератор, например Г5–54 с ручками, кнопками, выставить нужные параметры, подключить генератор к сервоприводу. Однако это громоздко и не все могут позволить себе такую роскошь. Поэтому разработчики, опираясь на свой опыт и знания, пытаются совместить желание (идею-задачу) и возможности (материальные и творческие) для реализации задачи. Материальные возможности — это та «жаба«А сколько и чего я хочу потратить на реализацию идеи?» Творческие возможности — это, «посмотрю-ка я, что у меня уже есть». Это не обязательно какие-то материальные ценности, а опыт и знания предыдущих разработок, которые можно приспособить под реализацию. Также не лишним будет поискать (погуглить), что кто-то уже реализовывал что-то подобное. Для сокращения вариантов решения необходимо самому добавлять дополнительные требования, ограничивающие фантазии реализации. Например, добавим к требованиям еще одно условие, пусть это будет материальное ограничение, реализация должна быть недорогой.
Поиск альтернатив
Воспользовавшись интернетом, поищем варианты, которые предлагает СЕТЬ. Зададим в поиске: «генератор прямоугольных импульсов с переменной скважностью». Получим очень много вариантов, как с применением интегральных таймеров NE555 (отечественный аналог КР1006ВИ1), так и на логических микросхемах. Из всего разнообразия я выбрал вариант генератора на инверторе с триггером Шмитта на входе. Во-первых, он самый простой, во-вторых, требует минимум деталей и самое интересное использует единственный логический элемент из шести, если, например, использовать микросхему 74HC14.
Схема такого генератора выглядит так:
Немного теории
Теория гласит, что частота такого генератора равна f = 1/T = 1/(0.8*R*C). Для получения требуемой частоты требуется выбрать номинал одного из элементов, задающих частоту. Так как логический элемент выполнен по технологии КМОП, то имеет большое входное сопротивление, поэтому можно применять элементы задающие небольшие рабочие токи. Выберем емкость С1 из ряда распространенных номиналов, например 0.47 мкФ. Тогда для получения требуемой частоты (50Гц) резистор должен быть приблизительно 53 кОм, но такого резистора в стандартном ряду нет, поэтому выберем 51 кОм.
На выходе такого генератора формируется сигнал близкий к меандру, поэтому нам необходимо скорректировать схему таким образом, чтобы она удовлетворяла требованиям задания. Для получения регулируемой длительности импульса на выходе необходимо изменить режим перезарядки конденсатора от высокого уровня на выходе, а именно, сократить время перезарядки. Для этого добавим в схему еще два элемента: диод и переменный резистор. Подойдет любой маломощный импульсный диод.
Тогда схема примет следующий вид:
Казалось бы: все, задача решена, но в крайних положениях переменного резистора поведение сервопривода нестабильно. Это связано с тем, что значение длительности импульсов, в крайних положениях переменного резистора, не соответствует требуемым. Лично мне также не по душе применение переменного резистора, поэтому я хочу изменить интерфейс управления, добавив новую «хотелку» в техническое задание, например чтобы скважность менялась в зависимости от освещенности. Для этого есть простое и недорогое решение: применить в качестве регулирующего элемента фоторезистор GL55xx (используют в проектах Arduino), изменение сопротивления которого лежит в широком диапазоне.
Далее начинается самое интересное. Расчетных формул для получения значений сопротивлений обеспечивающих требуемые длительности импульсов нет, поэтому на уровне интуиции (опытным путем, с помощью переменного резистора) определяем значения сопротивления, при которых устанавливаются требуемые значения длительностей импульсов. Затем изменяем схему так, чтобы при изменении сопротивления фоторезистора общее сопротивление изменялось, устанавливая требуемые значения длительностей импульсов.
Итоговая схема принимает следующий вид:
Пояснения к итоговой схеме
Конденсатор С1 номиналом 0.47 мкФ, определяет время перезаряда. Резистор R1 номиналом 51 кОм задает основную частоту повторения импульсов в районе 50 Гц. Комбинация резисторов R2-R4 в сумме будет изменяться в диапазоне от 2.5 кОм до 24 кОм в зависимости от освещенности. Вместе с диодом D1 эти резисторы будут влиять на время перезаряда конденсатора С1 при действии положительного импульса на выходе логического элемента, тем самым определять его длительность.
Результат
Подключив данный генератор к входу управления сервопривода получим возможность управлять им, изменяя освещенность фоторезистора. На видео можно посмотреть, что из этого получилось:
На этом казалось бы все, но могу предложить развитие данной разработки. Так как мы использовали всего один из шести логических элементов входящих в корпус микросхемы, то можно собрать еще пять генераторов и подключить их к другим сервоприводам. Подключив к исполнительным рычагам сервоприводов заслонки, которые будут перекрывать световой поток у фоторезисторов, управляющих другими сервоприводами, можно получить забавное поведение сервоприводов, но этот эксперимент предлагаю провести самостоятельно.
Дерзайте и удачи!