Время жизни подписчика — почему вы обязаны его знать?

upload7f3dck3c5f.jpg

Преимущества метрики CLT и способы расчета на примере данных о подписчиках интернет-магазина.

Постоянно занимаясь емейл-маркетингом большого количества различных компаний, мы видим ключевые метрики, интересные нашим клиентам, — это показатели открытий, кликов, отписок, конверсия в покупку, рост базы.

Но среди всего этого многообразия данных достаточно часто забывается такая метрика как время жизни подписчика (CLT — Customer Life Time), а ведь она совсем не заслуживает такой участи! Сейчас мы и расскажем вам, почему это так:-)

Само понятие времени жизни подписчика достаточно простое — это тот промежуток времени после попадания пользователя в базу, в течение которого он проявляет какую-либо активность по отношению к вашим рассылкам — открывает или кликает. Точкой окончания времени жизни считается дата последнего взаимодействия.

Почему же так важно знать этот показатель для вашей базы?

Понимая промежуток времени, в течение которого пользователь остаётся с вами, вы можете намного более адекватно понимать и оценивать поведение пользователя и делать наиболее подходящие для срока активности механики взаимодействия с подписчиками через триггерные сообщения, вовремя начинать реактивировать пользователя и так же вовремя расставаться с потерянными пользователями в целях оптимизации затрат на канал емейл-маркетинга.

Кроме этого, понимая срок жизни пользователя, вы сможете прогнозировать и ключевые метрики прибыли вашего бизнеса в целом, например, получив много подписок на рассылки в марте в результате проведения, допустим, рекламной кампании в Facebook и имея время жизни подписчика, равное трём месяцам, вы получите отличные данные по заработку в течение марта, апреля и мая, а начиная с июня заработок будет снижаться: мартовские пользователи начинают «умирать» в июне, и количество покупок в целом уменьшается. Поэтому, используя информацию о времени жизни пользователя, вы сможете проецировать эти данные на весь бизнес-процесс в целом и прогнозировать данные о заработке и прибыльности бизнеса.

Как же посчитать время жизни подписчика? Тут нам на помощь приходит когортный анализ (привет, матан!).

Когортный анализ — это разделение всех пользователей на определённые группы (когорты), объединённые схожим признаком, и последующий анализ активности этих групп с течением времени. В нашем случае мы возьмём в качестве признака для разделения на когорты дату подписки на рассылки и будем анализировать, как изменяются со временем активности (открытия и клики) когорт.

Как мы делаем — и как вы можете сделать то же самое самостоятельно:

  1. Разбиваем базу на когорты по дате подписки на рассылки, в одну когорту попадают пользователи, подписавшиеся в течение одного месяца.

  2. С помощью системы сегментации внутри вашей платформы рассылки или же вручную на основе истории активностей пользователей, выгруженной в Excel/csv, собираем статистику: сколько раз пользователи, подписавшиеся в феврале, открывали или кликали в письмах сначала в феврале, затем в марте и так далее — пока не соберём всю статистику по всем когортам.

  3. Из полученных данных затем формируем таблицу, как на примере ниже.

Чуть подробнее про второй пункт — как сформировать сами цифры по активности, например, в платформе Expertsender, — для этого нужно будет сделать столько сегментов, сколько значений в таблице (для таблицы ниже получилось 66 сегментов), взять затем количество подписчиков в каждом сегменте и перевести информацию об активностях в проценты, чтобы в итоге получить табличку со значениями.

Сегменты делаются по такому шаблону условий:

— подписка на рассылки произошла в промежуток между месяцами »1» и »2»

     И

— дата последней активности находится в промежутке между месяцами »1» и »2»

Затем берётся следующий сегмент — подписались в тот же временной промежуток, но последняя активность наблюдалась уже в следующем месяце. И так далее для всех когорт и месяцев :-)

Пример внешнего вида такого сегмента из Expertsender:

В верхнем блоке задаётся условие по подписке — подписка произошла более 7, но менее 8 месяцев назад. И во втором наборе условий аналогичное условие по дате последней активности (считаются и открытия и клики).

В таких сегментах в итоге вы получаете количество подписчиков, которые «умирают» в каждом конкретном месяце. Затем эту цифру нужно перевести в относительную величину, просто поделив полученное значение на общее количество подписчиков в выбранной когорте — получим процент пользователей, которые ежемесячно перестают реагировать на ваши емейл-рассылки.

Что нужно не забыть сделать дальше — это взять обратную цифру, чтобы видеть количество подписчиков, остающихся активными с течением времени, для этого просто вычитаем получившийся процент из 100 — и наконец находим финальную цифру, которая затем заносится в таблицу для последующего анализа результатов и показывает процент пользователей, оставшихся «живыми» на второй, третий и так далее месяц после подписки на рассылки.

Да, такой метод может показаться неэффективным с точки зрения затрат времени, но зато воспользоваться им сможет любой, у кого есть Excel:-)

А теперь давайте разберём пример одного интернет-магазина с очень лояльной базой подписчиков, их результаты распределения активности подписчиков по когортам в итоге выглядят следующим образом:

Прирост

февраль

март

апрель

май

июнь

июль

август

сентябрь

октябрь

ноябрь

декабрь

февраль

991

73,06%

67,31%

57,72%

54,49%

49,95%

51,06%

46,92%

50,76%

35,02%

39,46%

43,49%

март

738

74,66%

61,52%

58,94%

50,27%

48,64%

48,37%

49,59%

36,18%

41,46%

43,50%

апрель

739

76,18%

67,39%

52,37%

51,69%

48,31%

49,39%

35,59%

43,17%

46,28%

май

769

71,78%

61,38%

52,67%

51,24%

50,07%

36,02%

42,65%

43,30%

июнь

2238

72,79%

59,16%

56,12%

55,18%

42,00%

48,48%

49,55%

июль

1604

76,56%

59,91%

56,92%

40,84%

45,07%

46,57%

август

1650

77,39%

59,21%

38,61%

46,61%

46,61%

сентябрь

2291

78,61%

48,01%

50,11%

50,81%

октябрь

1587

73,47%

59,80%

56,21%

ноябрь

1623

75,72%

63,96%

декабрь

2052

70,32%

В этой таблице представлены данные за промежуток времени с февраля по декабрь 2015 года. Когорты брались по месяцам. В столбце «Прирост» мы видим информацию о том, сколько подписчиков добавилось в базу в конкретном месяце. По горизонтали же находится шкала времени — какова была активность в этом месяце для выбранной когорты. Распределение по цветам: зелёный — высокая активность, красный — самая низкая активность.

По сути, точка пересечения, например, май по вертикали и сентябрь по горизонтали (50,07%) говорит нам о том, что 50,07% пользователей, подписавшихся на рассылки в мае, затем открывали письма и в сентябре — то есть на пятый месяц жизни.

Что же видно на этом графике в целом?

Первое, что бросается в глаза, — это много красного цвета в октябре, и это значит, что рассылки, которые делались в октябре, были крайне неудачными, определённо стоит их проанализировать и попытаться понять, что в них было добавлено и послужило причиной такого резкого снижения интереса по всем когортам.

Второе — что интерес подписчиков очень незначительно падает в принципе, начиная от 70–75% в первый месяц попадания в базу до 35–38% в неудачный октябрь.

Если же мы попробуем проигнорировать статистику октября, которая явно была вызвана какими-то внешними вмешательствами в стратегию рассылок или контент писем, — то мы можем заметить, что примерно на пятый месяц пребывания в базе интерес подписчика входит в «оранжевую зону», о чём свидетельствует показатель в 40–50%. Таким образом, падение интереса на пятый месяц составляет около 40–50%, то есть почти в два раза.

Полученная информация даёт нам возможность понять, что примерно на пятый месяц интерес подписчика падает достаточно заметно, при этом всё равно оставаясь на очень хорошем уровне для интернет-магазина. Какого-то критичного падения интереса и явного умирания базы для данного ИМ в целом не заметно.

С другой стороны, для какого-то другого магазина может стать совершенно чётко понятно, в какой месяц после попадания подписчика в базу рассылок его интерес начинает критически снижаться, и эти данные дают вам возможность вовремя запустить автоматическую реактивационную цепочку и вернуть подписчика в сегмент активной базы.

Какие действия можно предпринять на основе данных о времени жизни подписчика?

  • Самое базовое, что нужно сделать, — это добавить автоматическую реактивационную цепочку из одного или нескольких писем и предлагать пользователю либо вернуться назад к регулярному взаимодействию с вашим брендом, либо же отписаться навсегда. В этом письме вы можете дать какую-то дополнительную скидку, бесплатную доставку, продлить триальный период пользования вашим сервисом да и просто спросить человека, почему ему не подошёл ваш сервис. В качестве примера можно привести реактивационное письмо от интернет-магазина Missguided (https://www.missguided.eu/), в котором они печалятся об уходе дружбы и добрых отношений с подписчиком, но предлагают возобновить общение, мотивируя на это бесплатной доставкой.

  • Кроме этого, вы можете корректировать ваши массовые рассылки, делая отправки с учётом даты попадания подписчика в базу и предлагая активным юзерам одну тему, а пользователям, которые готовы покинуть вас, — уже совсем другие темы, делая их более провокационными или предлагая большие размеры скидок, скорейшие сроки доставки либо же какие-то другие дополнительные бонусы, которые могут мотивировать пользователя к целевому действию на вашем сайте.

Таким образом, зная время жизни пользователя, вы можете корректировать рассылки, их темы, контент, частоту, добавлять новые триггеры и возвращать пользователя в круг активных, повышая выручку вашего проекта и продолжаю долгие и добрые отношения с пользователями.

Полный текст статьи читайте на CMS Magazine