Методика тестирования корпусных вентиляторов iXBT.com 2015 года


Предисловие

Корпусной вентилятор — весьма простая вещь, однако, его тестирование не такая тривиальная задача, как может показаться на первый взгляд. Для того чтобы оценить конкретный корпусной вентилятор, мы разработали методику тестирования, которая ориентирована на определение таких важных характеристик, как шум и создаваемый воздушный поток.

В компьютерной технике, воздушное охлаждение до сих пор является основным методом отвода тепла от различных элементов и компонентов системы. Мобильные ПК, такие как ноутбуки, ультрабуки в основном обходятся единой системой охлаждения, которая отвечает за отвод тепла от самых горячих элементов. Но если говорить о настольных компьютерах, то здесь складывается несколько иная ситуация, в силу того, что такие компьютеры, как правило, покупаются с расчетом на дальнейшую модернизацию или же изначально представляют собой высокопроизводительные системы, где активное охлаждение требуется не только процессору и видеокарте, но и остальным не менее важным компонентам. Корпуса для настольных ПК в своем большинстве имеют не одно посадочное место для установки вентиляторов различного размера. Установка этих вентиляторов должна помочь в обеспечении отвода тепла от разных внутренних компонентов ПК: системной платы, корзины дисков, видеокарты и т. д. В ряде случаев они играют лишь вспомогательную роль, однако самые мощные и высокопроизводительные настольные ПК зачастую нуждаются в них, так как элементы такого компьютера выделяют слишком много тепла.

За основу новой методики мы взяли часть наработок из нашей недавней статьи, посвященной тестированию процессорных кулеров, так как эти устройства в большинстве своем несут в себе обычный или несколько видоизмененный корпусной вентилятор. Для того чтобы оценить конкретный вентилятор, необходимо выделить наиболее важные характеристики исследуемой модели. На наш взгляд такими характеристиками являются шум и производительность, выраженная в создаваемом вентилятором воздушном потоке. Совокупность этих двух параметров может достаточно четко охарактеризовать вентилятор, что позволит сравнивать разные модели между собой. Построив график зависимости этих двух величин, а именно зависимости объемной производительности вентилятора от уровня шума, на выходе мы получим однозначный критерий оценки потребительских качеств вентилятора, так как эти два параметра взаимосвязаны. Кроме того, используя такой подход, можно сравнивать модели вентиляторов разной размерности, что очень удобно в силу того, что на рынке представлена масса различных вентиляторов, отличающихся как по конструкции, так и по типоразмеру.

Корпусные вентиляторы, как и процессорные кулеры, имеют два основных типа управления скоростью вращения крыльчатки: с помощью сигналов от ШИМ-контроллера и с помощью изменения напряжения питания в диапазоне от 1 до 12 В. Более подробно об этих методах управления мы рассказывали в нашей методике посвященной тестированию кулеров, поэтому мы не будем останавливаться на этом. Отметим лишь один важный момент. Современные системные платы имеют несколько разъемов для подключения корпусных вентиляторов. Бюджетные платы в большинстве своем имеют лишь один или два 4-контактных разъема, которые предполагают управление вентилятором посредством ШИМ, в то время как более дорогие модели плат могут похвастаться целым набором 4-контактных разъемов для подключения корпусных вентиляторов. С другой стороны, на рынке представлено немало различных внешних блоков управления корпусными вентиляторами, которые могут регулировать напряжение питания в диапазонах от 5 до 12 В. Более того, зачастую корпусные вентиляторы подключают напрямую к 5 В или 12 В шине питания, без использования промежуточных резисторов или реостатов. Таким образом, можно констатировать, что для корпусных вентиляторов до сих пор основным методом управления остается динамическое изменение напряжения питания. Поэтому при тестировании вентиляторов мы использовали оба метода управления, чтобы «отвязать» процесс от конкретной системной платы, блока питания или реостата.

Условия и инструменты тестирования

Чтобы обеспечить одинаковые условия тестирования всех исследуемых моделей корпусных вентиляторов, мы использовали отдельный стенд, который ранее задействовали при тестировании процессорных кулеров.

Стенд базируется на системной плате Biostar TPower X79 и процессоре Intel Core i7–3820, однако в процессе тестирования он применялся только для снятия показаний с отдельных инструментов и фактически не участвовал в процессе тестирования. Температура окружающей среды в ходе тестирования поддерживалась на уровне 22–24 °C, а сам стенд для тестирования располагался в открытом корпусе Cooler Master Lab Test Bench.

Для формирования управляющих ШИМ-импульсов применялся отдельный ШИМ-контроллер, который позволял задавать коэффициент заполнения в пределах от 0 до 100% с частотой 25 кГц и амплитудой 5 В.

Mastech HY1802D

Для задания необходимого напряжения питания использовался внешний блок питания Mastech HY1802D, позволяющий регулировать напряжение питания в диапазоне от 0 до 18 В. Скорость вращения вентилятора контролировалась посредством данных утилиты AIDA64 и данных, полученных с платы ШИМ-контроллера (к ней также был подключен провод от тахометра вентилятора).

Smart Sensor AS856

Для определения создаваемого вентилятором воздушного потока мы использовали анемометр Smart Sensor AS856, который подключается к компьютеру по USB и позволяет экспортировать полученные данные в xls-файл. Измерение скорости воздушного потока производилось с помощью специальной камеры, в основе которой лежит обычный таз. С одной стороны через специальный переходник к этой камере прикреплялся тестируемый вентилятор, а с другой была установлена крыльчатка ручного анемометра. Для этого в дне таза было просверлено отверстие, в которое и «устанавливался» анемометр.

Стенд

Вообще конструкция данной камеры весьма забавна, а описание ее создания может занять целую статью, но в рамках этого материала нам достаточно сказать следующее: каждая исследуемая модель крепится к камере с помощью своего собственного переходника таким образом, чтобы внутри камера оставалась полностью герметичной. Это необходимо для того, чтобы установленный вентилятор мог работать в качестве всасывающего элемента. Анемометр, установленный напротив вентилятора, в данном случае снимает показания о скорости воздушного потока, который вытягивается исследуемым вентилятором. Измерение скорости потока на входе в камеру позволяет избежать влияния вихревых потоков, генерируемых крыльчаткой вентилятора, в выдуваемом потоке воздуха. Отметим, что такая камера позволяет измерять воздушный поток у вентиляторов различного типоразмера. Однако полученные в результате этих измерений данные можно использовать только для сравнения вентиляторов одинакового типоразмера, так как создаваемое входным отверстием и крыльчаткой анемометра воздушное сопротивление постоянно и не меняется. Тогда как в условиях реальной эксплуатации вентилятор большего размера обычно нагружается пропорционально меньше, например, устанавливается на решетку большего размера или на соответствующее диаметру крыльчатки отверстие.

Стенд

Указываемые в технических характеристиках вентиляторов значения производительности или объемного расхода (чаще всего в м³/ч или в кубических футов в минуту, CFM — cubic feet per minute) будут отличаться от полученных нами значений, так как измерения производятся различными способами и другими измерительными приборами. При этом, очевидно, что производитель приводит данные по расходу, полученные в условиях свободного потока воздуха (если не указано иное), когда создаваемое вентилятором статическое давление равно нулю. В реальности (как и в условиях нашего теста) движению воздуха от и/или к вентилятору всегда всегда создается какое-то сопротивление и поток воздуха будет гораздо меньше, приведенного производителем на коробке с вентилятором. К сожалению, в случае компьютерных вентиляторов зависимости давления от объемного расхода обычно не приводятся. Поскольку это новая методика, мы допускаем, что в дальнейшем этот тест и инструменты для измерения могут быть несколько модифицированы или заменены.

Шумомер

Измерение уровня шума проводилось в специальной звукопоглощающей камере. Высокочувствительный шумомер располагался в 21 см от верхнего торца вентилятора. В свою очередь сам вентилятор подвешивался на четырех резинках, которые проходили через штатные отверстия для крепления. Резинки растягивались, и вентилятор как бы «подвисал» в воздухе, что позволило нивелировать возможные шумы, в том случае если бы вентилятор просто стоял на полу или был бы закреплен на плоскости. Такое местоположение было выбрано и для того, чтобы не привязываться к габаритам тестируемого вентилятора. Показания уровня шума снимались после стабилизации в течение 3–5 минут. Отметим, что при измерении уровня шума не использовалась стандартная методика, по которой тестируют вентиляторы са

Полный текст статьи читайте на iXBT