Как выбрать внутренний жесткий диск для сетевого хранилища
Системы хранения данных (СХД), такие как NAS, актуальны не только для компаний малого и среднего бизнеса. Их популярность растет среди домашних пользователей. Этому способствует распространение технологий UHD 4K, HDR, многопиксельных матриц, собственных медиатек, игротек и библиотек, систем видеонаблюдения, одним словом — всего, что увеличивает размер файлов и приводит к росту объемов информации. При создании сетевого хранилища перед новыми пользователями неизбежно встает вопрос о выборе жестких дисков. На что следует обратить внимание, чтобы не совершить ошибку при построении дискового массива? Начнем с небольшого экскурса «в архитектуру» СХД.
Was ist DAS? … Ist NAS? … Ist SAN?* Какое архитектурное решение выбрать для СХД?
* Дословный перевод с немецкого: Что это такое? Это NAS? Это SAN? В данном случае речь идет об игре слов — DAS также является аббревиатурой названия одного из архитектурных решений СХД.
Системы хранения данных (СХД) могут быть организованы разными способами. На текущий момент известно три архитектурных решения СХД. Опишем их в порядке усложнения:
- DAS (Direct Attached Storage). Простейшее решение, при котором подключение дискового массива (ДМ) к серверу (компьютеру) осуществляется напрямую, т.е. без участия сетевых устройств. В результате мы имеем только два компонента СХД, соединенных кабелем (рис. 1) — сервер (не более 2-х) + ДМ. Дисковый массив при этом — обычная, хотя и расширяемая без потери скорости передачи данных, корзина с дисками. Из-за все большего несоответствия требованиям современности рыночный сегмент DAS стремительно вытесняется технологией NAS.
Рис. 1. Логическая схема подключения DAS - NAS (Network Attached Storage). Организация СХД, при которой подключение дискового массива к неограниченному количеству клиентов (серверов и рабочих компьютеров) с различными ОС происходит по локальной сети. Таким образом, в рамках СХД мы видим три элемента (см. рис. 2): серверы + локальная сеть + ДМ. Дисковый массив при этом — уже не просто корзина с дисками, а отдельный сервер со специализированным ПО, выполняющий единственную функцию «файлера», с возможностью совместного доступа к данным через Ethernet, а также Internet — при предоставлении провайдером статического внешнего IP-адреса (см. рис. 2). Многие модули NAS уже позволяют «горячую» замену/добавление дисков, без перевода сервера в автономный режим. В целом функциональность NAS классов «Home» и вплоть до сегмента «Enterprise» определяется следующим набором характеристик**:
максимальной поддерживаемой емкостью дискового массива — от 2 ТБ (2×1ТБ), без возможности расширения, до 300 ТБ (30×10ТБ SATA+SSD), с возможностью расширения до 180 дисков;
скоростью чтения/записи — от 100/50 Мбит/с до 5000/3500 Мбит/с;
производительностью (количеством операций ввода-вывода в секунду) — от 350 до 570 000 IOPS;
количеством одновременных подключений (SAMBA, FTP, AFP) — от 64 до 2048;
количеством поддерживаемых томов — от 256 до 1024;
количеством поддерживаемых типов управления ДМ (Basic; JBOD; RAID 0; RAID 1; RAID 5; RAID 5+Spare; RAID 6; RAID 10 (1+0);
количеством поддерживаемых файловых систем (BTRFS, EXT4, EXT3, NTFS, FAT);
тактовой частотой процессора — от 800 МГц до 2,7 ГГц (четырехядерного);
типом и объемом оперативной памяти — от 256 Мб (DDR3) до 128 ГБ (DDR4 RDIMM с функцией исправления ошибок);
типом и количеством сетевых портов — от Gigabit×1 до 10Gigabit×4;
поддержкой сетевого файлообменного протокола iSCSI (Internet Small Computer System Interface) — на его основе кроме файлового доступа к данным возможен блочный доступ при поддержке, например, OpenStack Cinder;
количеством поддерживаемых приложений (HASP, Time Backup, Time Machine, Squeezebox, phpMyAdmin, Webalizer, VPN, Mail Station);
поддержкой систем виртуализации (VMware, vSphere, Microsoft Hyper-X, Citrix Xen).
** Приведены средние характеристики для сегментов «дом», «малый офис», «средний офис».Визуально топологию сети (логическую схему) при использовании NAS можно представить следующим образом:
Рис. 2. Место NAS-сервера в сетевом окружении - SAN (Storage Area Network). Сложное корпоративное решение, отличное от локальной сети. В рамках географически распределенной сети хранения данных оно подразумевает возможность подключения разнотипных носителей информации — от ДМ и виртуальных ленточных библиотек на основе стримеров до оптических накопителей — и рассчитано на работу с огромными массивами данных. При этом все носители информации воспринимаются операционными системами как локальные устройства. В SAN осуществляется блочный (а не файловый) доступ к данным исключительно через серверы. В самом простом варианте логическая схема сети хранения данных (структурной ячейки сети) включает 4 элемента (см. рис. 3): сервер + коммутатор + каналы связи + СХД.
Многокоммутаторные структуры, или так называемые фабрики FFC (Fabric Fibre Channel), представляющие собой совокупность коммутаторов, соединенных между собой линиями c использованием технологии Fibre Channel, могут иметь каскадную (древовидную) топологию, вид «кольцо», «решетка» и др. Независимо от логической схемы в SAN каждый ДМ имеет подключение минимум к двум коммутаторам, а каждый коммутатор — минимум к двум серверам, и то же самое в обратном порядке. Таким образом достигается высочайшая безотказность SAN и доступность данных (high availability): при полном выходе из строя одного дискового массива, одного коммутатора, одного сервера или одного канала связи система продолжит функционировать. При этом количество хост-адаптеров (контроллеров) шины (HBA, Host Bus Adapter) в сервере может быть расширено, а вместе с этим каждый сервер получит больше подключений к SAN, и сама сеть хранения данных — еще большую надежность (выше 99,99%).
Рис. 3. Центрально-распределенная топология сети SAN
Итак, мы познакомились с тремя архитектурными решениями, в соответствии с которыми можно построить СХД. Они отличаются по многим техническим и функциональным параметрам, но в первую очередь — по стоимости. Как можно понять, каждый тип организации систем хранения данных изначально ориентирован на определенный сегмент потребителя. Дисковые массивы DAS, как морально устаревающий вариант СХД, постепенно уходят в прошлое, хотя до сих пор востребованы из-за их финансовой доступности. Сети SAN — дорогое удовольствие, доступное только корпоративному сектору.
Самый перспективный и динамично развивающийся сегмент — это модули NAS, на принципах организации которых можно построить как домашнюю, так и корпоративную СХД. Благодаря своей универсальности и невысокой стоимости они практически вытеснили классические корпоративные файловые серверы, которые «грешили» дополнительными нагрузками на сеть, нерационально использовали ресурсы, снижали общую надежность сети. Конечно в безотказности NAS не могут соревноваться с сетями SAN, но по многим другим параметрам (кластеризация, межплатформенная синхронизация данных с управлением версиями файлов) могут стать их альтернативой.
В каких вариантах продаются и можно ли самостоятельно построить СХД?
Начнем со второй части вопроса. Любую систему хранения данных можно спроектировать и воплотить в жизнь своими силами. Все зависит от двух факторов: времени и квалификации, которыми необходимо обладать. Навыки сетевого администратора для СХД класса «сделай сам» должны быть следующими:
DAS — сетевой администратор-любитель. Для построения системы хранения данных этого типа достаточно изучить материалы, доступные в интернете.
Кроме простой инструкции ничего знать не нужно: вставил — заработало.
NAS — продвинутый сетевой администратор. Необходимо иметь опыт сборки «железа» и применения специализированного ПО, которое участвует в управлении и администрировании СХД. Требуется изучение инструкции по подключению и использованию веб-интерфейса встроенного ПО.
SAN — сетевой администратор-профессионал. В сложных и географически распределенных решениях придется задействовать целую команду профессионалов, которая займется проектированием, подбором комплектующих, тонкой настройкой, тестированием, запуском и обслуживанием сети хранения данных. В бытовых условиях это неактуально и нереализуемо, поэтому рассматривать процесс построения SAN далее не имеет смысла.
Конечно, многое будет определяться сложностью СХД, поскольку бывают, например, простые NAS-решения и сложные DAS-массивы.
Далее, для ответа на первую часть постановленного вопроса, ввиду бесперспективности хранилищ DAS и недоступности широкому кругу потребителей решений SAN, мы будем рассматривать только дисковые массивы на основе NAS.
Итак, кроме категории «сделай сам» на рынке существуют готовые решения, которые производителем изначально оптимизированы под работу с дисковыми массивами определенной емкости и производительности, под заданные скорости и топологию каналов связи, под максимальные нагрузки на сеть. Сетевые накопители можно разделить на две группы:
- «Все включено» — сетевые хранилища с предустановленными дисковым массивом и операционной системой управления ДМ, заводской тонкой настройкой «железа» (с возможностью модернизации или без), дополнительным ПО (с возможностью обновления и расширения или без).
- Бездисковые модули — все то же самое, только с возможностью выбрать и сконфигурировать дисковый массив по собственному усмотрению. Преимуществом таких продуктов можно назвать возможность постепенного увеличения количества и емкости дисков в пределах ДМ.
Производители NAS-модулей любой из указанных групп ориентируют свои решения на определенный целевой сегмент и сценарии использования. Иногда такое деление может быть достаточно подробным, например:
NAS класса «Home» (для домашнего использования);
NAS для малого офиса;
NAS для систем видеонаблюдения;
NAS для бизнес-групп;
NAS для среднего офиса;
NAS класса «Enterprise» (для крупных корпоративных клиентов).
Спецификации отличаются по многим характеристикам (указывались выше), в частности, по возможностям масштабирования (подключения новых модулей с дисковыми массивами), и по исполнению корпуса (напольные, настольные и «рэковые» варианты для установки в серверные стойки).
Требования к жесткому диску для NAS
Конечно, никто не запрещает поставить в бездисковый NAS-модуль любой накопитель информации, который подойдет по форм-фактору (3,5 и/или 2,5 дюйма) и по интерфейсу (SATA, eSATA, SAS), но тогда возникает закономерный вопрос: зачем вообще создавать сетевое хранилище NAS? Ведь иначе можно использовать обычный внешний диск большой емкости или простенький вариант DAS.
Дело в том, что потребность в сетевом накопителе возникает при необходимости:
- удаленного доступа к файлам;
- совместного доступа к данным; локально подключенный DAS можно выделить в общий доступ при помощи встроенного в Windows сервиса Share.
- доступа в любой момент времени без задержки;
- частого доступа к большим объемам информации (например, когда один диск содержит данные более чем на 12 Тб);
- работы жестких дисков в составе ДМ (может использоваться и один диск).
Для качественного выполнения этих условий требуются накопители информации, специализированные для их выполнения. Поэтому производители последнее десятилетие активно разрабатывают и совершенствуют диски для построения NAS-массивов. Многие свои качества они унаследовали от своих старших собратьев — серверных дисков, применяемых в дата-центрах (ЦОД). Собственно, NAS-диски стали своеобразным компромиссом между серверными и персональными решениями накопителей по показателям цены, скорости и надежности. Однако каждый потребитель для себя выбирает характеристики устройства, необходимые для целей личного применения.
Но какими характеристиками должны тогда обладать NAS-диски? Речь пойдет о наборе параметров, находящихся в тесной взаимосвязи.
Во-первых, это надежность и работа в круглосуточном режиме, которая предполагает высокую устойчивость устройства к износу. Чтобы NAS-диск обеспечивал непрерывную готовность к передаче запрашиваемых данных, привод шпинделя, по сравнению с обычным диском, имеет больший «таймаут» по «парковке» и остановке шпинделя в отстутствие обращений к устройству, т.е. он почти не останавливается, а считывающие головки диска — не «паркуются». Это, кстати, и увеличивает надежность, ведь наиболее часто проблемы у дисков случаются при старте/выключении — головки могут неловко распарковаться/запарковаться, шпиндель может заклинить и сервисная информация может не так записаться при остановке диска. NAS-диски имеют высокий показатель средней наработки на отказ (MTBF) — от 1 до 3 млн часов (в зависимости от класса устройства), что на треть и более выше, чем у «обычных». Рабочая нагрузка устройств — от 180 до 550 ТБ в год, что в 3–10 раз больше, чем у дисков для настольных ПК. Из характеристик надежности дисков вытекают условия гарантийных обязательств производителей — от 3 до 5 лет.
Во-вторых, это устойчивость к вибрации, которая возникает при использовании HDD в дисковом массиве. Балансировка диска в двух плоскостях способна снижать вибрацию, но в многодисковой среде вибрация может усилиться. Поэтому в NAS-модулях c четырьмя и более дисками рекомендуется использовать HDD, дополнительно имеющие датчики вращательной вибрации. Снижение вибрации сокращает износ NAS-дисков.
В-третьих, это защита от сбоев, она реализуется комплексом технологических решений, не только таких как отсутствие частой парковки головок и остановок двигателя при простое, но и тайм-аутом при коррекции ошибок. Диски NAS имеют особую прошивку, ключевая характеристика которой — измененная реакция на появление ошибок чтения и записи. При необходимости восстановления информации из неустойчивого или сбойного сектора диск через восемь секунд оповещает RAID-контроллер, в составе которого он работает, о том, что ему нужна помощь для восстановления утерянного фрагмента. После этого происходит переназначение сбойного сектора, даже если показатели S.M. A.R.T остаются в норме. «Обычные» же диски чаще всего «тупо» продолжают попытки чтения, что воспринимается RAID-массивом, как полный отказ диска — происходит его «вылет» из системы RAID.
В-четвертых, это повышенная энергоэффективность, благодаря которой почти в два раза снижена температура их нагрева в сравнении с «обычными» жесткими дисками. Это позволяет устанавливать диски в относительно небольшом и тесном корпусе сетевого хранилища, не опасаясь перегрева.
Производители сетевых накопителей предполагают, что в их устройстве будут использоваться именно NAS-диски, а не первые попавшиеся HDD. Специализированные модели всегда тестируются на совместимость с сетевыми хранилищами, а значит их установка и использование будут максимально эффективными и беспроблемными.
Что учесть при выборе
Выше мы изложили общие для большинства NAS-дисков требования, но на что следует обращать внимание при выборе HDD для вашего сетевого хранилища?
Обычно рекомендуется принимать во внимание несколько главных факторов: емкость, максимально возможное количество NAS HDD в RAID-массиве, надежность диска с учетом будущих рабочих нагрузок, уровень безопасности и шумность.
В числе прочего выбор NAS-дисков определяется функциональными задачами, для решения которых они будут использованы. Например, дисковый массив может использоваться как место хранения для баз данных, файловый сервер, веб-сервер, рабочая станция, которые, в свою очередь, могут быть ориентированы на выполнение задач видеозаписи, редактирования изображений, игрового центра и пр. Поскольку требования к надежности и производительности диска должны диктоваться предполагаемой рабочей нагрузкой на систему в текущий момент и в перспективе, обязательно следует учитывать сценарий его использования. При типичной рабочей нагрузке, например, записях телепередач и последующем их воспроизведении сценарий более последователен и предсказуем. При нетипичных рабочих нагрузках, когда данные записываются и считываются с диска произвольно, сценарий становится более напряженным и непредсказуемым, что влияет на надежность работы. На надежность может оказывать влияние и интерфейс диска.
Для обеспечения необходимого уровня безопасности в некоторых дисках используются функции самошифрования и мгновенного безопасного стирания. Такие HDD необходимы, скорее, для корпоративного использования, в компаниях, где предполагается хранение больших объемов информации для ограниченного пользования.
Для домашних NAS-модулей существенным параметром становится уровень шума, производимого дисковым массивом при работе. Особенно, если накопитель стоит в той же комнате, где спят люди. Специалисты рекомендуют выбирать жесткие диски с собственным низким уровнем шума при операциях доступа и с минимальным нагревом во время работы. Система охлаждения NAS в этом случае будет работать гораздо тише. При линейных операциях основной шум при работе NAS издает кулер. Современные диски на гидроподшипниках не шумят при линейном чтении. Но если операции с диском преимущественно «рандомные» (случайные, хаотичные, беспорядочные), то здесь уже жаловаться не на что — можно настроить, например, систему кэширования для ускорения доступа к данным в торрент-трекере…
За исключением емкости и цены, некоторые специфические параметры HDD для сетевых накопителей NAS, на которые важно обращать внимание, таковы:
- Плотность записи. Каждый NAS HDD состоит из нескольких магнитных пластин для записи различной емкости — от 400 Гб до 2 Тб каждая. Чем больше емкость пластин жесткого диска, тем выше плотность записи. Высокая плотность записи улучшает быстродействие диска, время отклика, если сценарий его использования, например, потоковое видео, то есть при последовательном чтении/записи. Если сценарий применения ДМ предполагает произвольную чтение/запись, то плотность записи уже не играет существенной роли. Однако, при большей плотности головкам чтения/записи придется перемещаться на меньшее количество треков за новыми данными. Поэтому существует такое понятие как Locality, т.е. близость размещения данных.
- Скорость вращения шпинделя. Скоростными дисками для NAS-массивов принято считать устройства со скоростью вращения шпинделя 7200 об/мин. В сочетании с высокой плотностью записи такие NAS-диски отличает превосходная производительность. Одновременно высокая скорость вращения во многом компенсирует низкую плотность записи (Плотность записи определяется возможностями электроники «канала чтения/записи» и, действительно, зависит от скорости вращения шпинделя. Но, имхо, не стоит говорить о «низкой» плотности, так как всё определяется объёмом данных, которые мы можем записать/считать за оборот. Быстрый шпиндель дает нам уменьшение времени реакции накопителя на случайные запросы, а линейная скорость зависит только от количества секторов на треке и времени оборота шпинделя).
- Скорость чтения/записи. Ее увеличивают особые технологические решения, например, 2 приводная система позиционирования головок. Двухприводная система позиционирования нужна была для увеличения точности позиционирования при росте плотности записи. Поскольку треки становились такими тонкими, что старое «коромысло» блока головок нельзя было точно удержать на треке. А так как скорость чтения/записи растет с повышением плотности записи — за один оборот пластины можно считать больше секторов, либо при повышении скорости вращения пластин — читается столько же секторов, только за меньшее время.
Однако, как говорят результаты тестов, быстродействие зависит, в основном от пропускной способности сетевой карты NAS-модуля. Кроме того, в бытовых условиях, чтобы ощутить всю прелесть высокой пропускной способности дискового массива, потребуются скоростные каналы связи. При этом IEEE 802.11ac и гигабитный Ethernet не способны ее обеспечить на должном уровне, потребуется, например, прямое соединение посредством Thunderbolt либо уже 10-гигабитный Ethernet во всей локальной сети, что в домашних условиях реализовать достаточно затратно. - Электропотребление. С одной стороны, высокая производительность дисков почти всегда «идет в ногу» с повышенным энергопотреблением. Но низкое потребление энергии ведет по цепочке: к пониженному тепловыделению (до 2° C с диска), к менее интенсивной работе кулеров, к меньшему уровню шума, к экономии электроэнергии на всей NAS-системе (до 20 кВт×ч в год в расчете на диск). Как бы странно это ни звучало, экономичность NAS-дисков важнее их производительности (за редким исключением).
- Совместимость. Следует учитывать совместимость выбранных HDD с NAS-модулем, в который они будут устанавливаться. Фактор совместимости может найти свое выражение в отсутствии поддержки NAS-системой особых функций накопителя, как ставшего стандартным «спящего» режима, так и многих других фирменных функций. Совместимость должна поддерживаться и между самими HDD NAS. Например, тип управления дисковым массивом RAID 1 предполагает запись данных сразу на пару (пары) дисков), а при использовании в пределах одного раздела накопителей с различными скоростями вращения шпинделя более скоростной NAS-диск будет постоянно ожидать окончания работы своего отстающего собрата. Однако, только при «записи» на RAID1 мы лимитируемся скоростью более медленного диска, но большинство операций по статистике — это «чтение». Конечно, такая конфигурация также может иметь место, но крайне нежелательна, поскольку лишает RAID-массив преимуществ.
Внимание стоит уделить и первоначальному объему дисков, поскольку при необходимости их замены пользователь может столкнуться с серьезными сложностями, вплоть до временного бэкапа всех имеющихся данных для переноса. Что касается стоимости, практически в любом случае самый выгодный по цене одного гигабайта (но не самый дешевый) — это диск наибольшего объема. Но установка таких дисков не всегда оптимальна. Чем больше объем RAID-массива, тем дольше он будет восстанавливаться при замене диска или после вероятного сбоя (порой — больше суток).
Учитывая многообразие параметров и подходов к выбору, перед покупкой тех или иных дисков всегда консультируйтесь с торговыми представителями, которые помогут подобрать «правильную» модель в соответствии с вашими целями использования сетевого накопителя NAS.
Особенности жестких дисков Seagate
Главными производителями жестких дисков для NAS-систем являются три компании — Seagate, Western Digital и HGST. Остальные именитые, но немногочисленные бренды, такие как, Toshiba, например, только начинают входить на этот рынок, встречая на пути серьезную конкуренцию.
Seagate присутствует на рынке с 1978 года, именно она стояла у истоков создания современных видов накопителей вместе с IBM.
Сегодня специально для сетевых хранилищ NAS Seagate представляет две линейки жестких дисков на базе внутреннего интерфейса SATA 6 Гбит/с — IronWolf™ и IronWolf™ Pro, каждая из которых имеет несколько модификаций (см. табл. 2), отличных по нескольким параметрам:
емкости — от 1 Тб до 12 Тб;
пределу годовой многопользовательской нагрузки — от 180 до 300 Тб;
максимальному количеству использования дисков в NAS-системе — от 8 до 16 отсеков;
скорости вращения шпинделя — 5900 и 7200 об/мин;
объему кэш-памяти (промежуточного буфера для быстрого доступа) — от 64 до 256 МБ;
пропускной способности по внешнему диаметру — от 180 до 250 МБ/с;
потребляемой мощности в рабочем режиме — от 3,76 до 8,8 Вт;
шумовым характеристикам в рабочем режиме — от 21 до 32 дБ;
устойчивости к динамическим нагрузкам — от 250 до 300 G.
Таблица 2. Сравнительные характеристики NAS-дисков IronWolf™ и IronWolf™ Pro от Seagate
Обе серии поддерживают технологии Seagate AgileArray и IHM (IronWolf Health Managemen), которые управляют компенсацией вибраций при работе нескольких дисков в одном хранилище, противодействуют типичным проблемам и угрозам, возникающим в NAS-системах, предлагают рекомендации по восстановлению данных. В конструкции диска имеются активные датчики, данные с которых используются для коррекции движения головок при записи/чтении. Но нужно учесть, что система корректировки вибраций в IronWolf имеется только в моделях емкостью от 4 Тб.
На сетевые хранилища для офиса вместимостью до 16 HDD компания ориентирует линейку IronWolf Pro, которая поставляется пользователям с услугой восстановления данных Rescue сроком действия два года (работает не во всех странах). Можно сказать, что это одно из лучших решений для целей резервного копирования, архивирования и аварийного восстановления, а также для виртуализации и создания локального частного облака. Высокопроизводительные серверные решения для гипермасштабируемых приложений и ЦОД реализуются в линейке Enterprise Capacity HDD с пределом годовой нагрузки на диск до 550 Тб и временем наработки на отказ — 2,5 млн часов. Во флагманских моделях гермозона заполнена гелием, что позволяет уменьшить сопротивление вращению пластин и противодействует перегреву головок.
Среди других разработок компании можно отметить еще две серии:
BarraCuda (жесткие диски для ПК, ноутбуков, мобильных устройств, устройств DAS) и ее игровая модификация FireCuda;
SkyHawk (диски, оптимизированные для записи с цифровых и сетевых видеорегистраторов).
Компания предлагает своим покупателям не просто жесткие диски высокого качества, но целый спектр решений, подходящих для конкретных задач. Пользователям отныне доступны образцы высоких серверных технологий, способных качественно улучшить работу их устройств.
Полный текст статьи читайте на F-Center