Блок питания EVGA 650 N1: антикризисный продукт известного бренда

Розничные предложения

В ассортименте компании EVGA есть и бюджетные источники питания. Мы познакомимся с ними на примере одного из представителей серии N1 — EVGA 650 N1. Всего в этой серии представлено четыре модели мощностью 400, 550, 650 и 750 Вт. Для сборки бюджетного компьютера наибольший интерес представляют младшие модели, но у нас на руках в силу различных причин оказалась модель мощностью 650 Вт, так что пока познакомимся с ней.

Длина корпуса блока питания стандартная и составляет около 140 мм, данную модель можно уместить в любой компьютерный корпус, который поддерживает установку блоков питания формата ATX. Корпус имеет матовое покрытие черного цвета с мелкой фактурой, следы от рук на таком покрытии почти не остаются. Все провода тут несъемные.

Упаковка блока питания представляет собой картонную коробку достаточной прочности с матовой полиграфией. В оформлении преобладают оттенки черного цвета.

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 624 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет 0,96, что вполне достойно.

Производитель отдельно отмечает, что максимальную мощность блок питания способен отдавать при температуре окружающего воздуха не выше 25 °C. Для российских климатических условий подобный вариант не является удовлетворительным. Стоит учитывать, что для компьютерных блоков питания рекомендованная эксплуатационная температура находится в диапазоне от +10 до +50 градусов. Но в случае бюджетных продуктов подобное ограничение встречается весьма часто.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
4 pin 12V Power Connector  
8 pin SSI Processor Connector 1 разборный
6 pin PCI-E 1.0 VGA Power Connector  
8 pin PCI-E 2.0 VGA Power Connector 2 на одном шнурах
4 pin Peripheral Connector 3  
15 pin Serial ATA Connector 6 на двух шнурах
4 pin Floppy Drive Connector 1  

Длина проводов до разъемов питания

  • до основного разъема АТХ — 55 см
  • до процессорного разъема 8 pin SSI — 62 см
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 55 см, плюс еще 12 см до второго такого же разъема
  • до первого разъема SATA Power Connector — 45 см, плюс 12 см до второго и еще 12 см до третьего такого же разъема
  • до первого разъема SATA Power Connector — 45 см, плюс 12 см до второго и еще 12 см до третьего такого же разъема
  • до разъема Peripheral Connector («молекс») — 45 см, плюс 12 см до второго и еще 12 см до третьего такого же разъема, плюс еще 12 см до разъема питания FDD

Длина проводов является достаточной для комфортного использования в корпусах типоразмера full tower и более габаритных с верхним расположением блока питания. В корпусах высотой до 55 см с нижнерасположенным блоком питания длина проводов также должна быть достаточной: до разъема питания процессора — чуть больше 60 сантиметров. Таким образом, с большинством современных корпусов проблем быть не должно. Правда, с учетом конструкции современных корпусов, имеющих развитые системы скрытой прокладки проводов, шнур с разъемом питания процессора вполне можно было бы сделать и более длинным: скажем, от 70 см, чтобы обеспечить максимальное удобство работы при сборке системы.

Разъемов SATA Power достаточное количество для решения такого уровня, и размещены они на двух шнурах питания. Разъемы прямые, что удобно в случае накопителей, размещаемых с тыльной стороны основания для системной платы.

Схемотехника и охлаждение

Блок питания оснащен активным корректором коэффициента мощности и имеет расширенный диапазон питающих напряжений от 100 до 240 вольт. Это обеспечивает устойчивость к понижению напряжения в электросети ниже нормативных значений.

Основные полупроводниковые элементы установлены на двух радиаторах средних размеров. На первом размещены элементы цепей переменного тока, а на втором — выпрямители.

Платформа тут явно не самая передовая: реализована групповая стабилизация каналов +5VDC и +12VDC, а также +3.3VDC на отдельном стабилизаторе на базе магнитного усилителя. Все вполне типично для решений бюджетного сегмента.

Конденсаторы в блоке питания в основной массе представлены продукцией под торговыми марками Teapo и Capxon. Это далеко не самый плохой вариант для бюджетного продукта.

120-миллиметровый вентилятор EFS-12E12H произведен компанией DWPH и основан на подшипнике скольжения.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
  более 5% неудовлетворительно
  +5% плохо
  +4% удовлетворительно
  +3% хорошо
  +2% очень хорошо
  1% и менее отлично
  −2% очень хорошо
  −3% хорошо
  −4% удовлетворительно
  −5% плохо
  более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Блок питания успешно запустился на максимальной заявленной мощности и проработал более 30 минут. В дальнейшем работоспособность также сохранилась.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC не превышают 4% по всем диапазоне мощности, что является удовлетворительным результатом.

При типичном распределении мощности по каналам отклонения от номинала не превышают 2% по каналам +3.3VDC и +12VDC и 4% по каналу +5VDC.

Блок питания позволяет обеспечивать нагрузку с общим потреблением не менее 400 Вт по каналу +12VDC. При дальнейшем росте потребления по каналу +12VDC увеличивается отклонение напряжения по каналу +5VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%.

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 250 Вт при отклонении в пределах 3%. Это позволяет использовать десктопные платформы среднего уровня, имея ощутимый запас.

В случае системной платы максимальная мощность по каналу +12VDC составляет не менее 100 Вт при отклонении не более 3% от номинала. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт. Таким образом, проблем тут быть не должно.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы тут подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 21,2 23,8 26,1 35,3 42,7 40,9 66,6
Super Flower Leadex II Gold 850W 12,1 14,1 19,2 34,5 45 43,7 76,7
Super Flower Leadex Silver 650W 10,9 15,1 22,8 45 62,5 59,2  
High Power Super GD 850W 11,3 13,1 19,2 32 41,6 37,3 66,7
Corsair RM650 (RPS0118) 7 12,5 17,7 34,5 44,3 42,5  
EVGA SuperNova 850 G5 12,6 14 17,9 29 36,7 35 62,4
EVGA 650 N1 13,4 19 25,5 55,3 75,6    
EVGA 650 BQ 7 12,5 17,8 34,5 44,3 42,5  

Чем выше мощность нагрузки, тем хуже выглядит экономичность данной модели, но это вполне типично для бюджетных решений. В реальных условиях вряд ли кто-то будет нагружать данный блок питания выше 400 Вт.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
  Вт
Enhance ENP-1780 106,4
Super Flower Leadex II Gold 850W 79,9
Super Flower Leadex Silver 650W 93,8
High Power Super GD 850W 75,6
Corsair RM650 (RPS0118) 71,7
EVGA SuperNova 850 G5 73,5
EVGA 650 N1 113,2
EVGA 650 BQ 107,2

На низкой и средней мощности потребление тут не самое низкое, что вполне соответствует уровню сертификата и позиционированию продукта в целом.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 317 1085 1981 3813 4754 4738 7153
Super Flower Leadex II Gold 850W 237 1000 1920 3806 4774 4763 7242
Super Flower Leadex Silver 650W 227 1008 1952 3898 4928 4899  
High Power Super GD 850W 230 991 1920 3784 4744 4707 7154
Corsair RM650 (RPS0118) 193 986 1907 3806 4768 4752  
EVGA SuperNova 850 G5 242 999 1909 3758 4702 4687 7117
EVGA 650 N1 249 1042 1975 3988 5042    
EVGA 650 BQ 193 986 1908 3806 4768 4752  

Температурный режим

Термонагруженность конденсаторов в БП во всем диапазоне мощности сравнительно невысокая.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 м размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

При работе в диапазоне до 200 Вт шум блока питания находится на сравнительно низком уровне (ниже среднетипичного). Такой шум будет малозаметен на фоне типичного фонового шума в помещении в дневное время суток, особенно при эксплуатации данного блока питания в системах, не имеющих какой-либо звукошумовой оптимизации. В обычных бытовых условиях большинство пользователей оценивает устройства с подобной акустической эргономикой как относительно тихие.

На мощности 300 Вт шум можно считать средним для жилого помещения в дневное время суток. Подобный уровень шума вполне приемлем при работе за компьютером.

При дальнейшем увеличении выходной мощности уровень шума заметно повышается. При нагрузке в 400 Вт шум блока питания уже превышает значение в 40 дБА при условии настольного размещения, то есть при расположении блока питания в ближнем поле по отношению к пользователю. Подобный уровень шума можно охарактеризовать как достаточно высокий.

На максимальной мощности уровень шума составил около 51 дБА. Подобный уровень шума можно считать очень высоким.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 300 Вт.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.

В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать низким: превышение фонового шума составило не более 2 дБА.

Потребительские качества

Потребительские качества EVGA 650 N1 находятся на среднем уровне, если рассматривать применение данной модели в домашней системе, в которой используются типовые компоненты.

Акустическая эргономика у БП не самая выдающаяся, так как при нагрузке свыше 300 Вт он уже весьма заметно шумит. Однако в реальных условиях компоненты, имеющие подобное потребление, сами по себе будут издавать значительный шум. В то же время, в режиме простоя и низкой нагрузки (до 200 Вт) блок питания работает относительно тихо.

Длина проводов у БП вполне достаточная для современных среднебюджетных корпусов.

Отметим высокую нагрузочную способность платформы по каналу +12VDC, а также большое количество разъемов (для решения подобной стоимости).

Итоги

Блок питания EVGA 650 N1 позволяет использовать одну мощную видеокарту и современную среднебюджетную платформу с общим потреблением не менее 400 Вт по каналу +12VDC. При дальнейшем росте потребления по каналу +12VDC увеличивается отклонение напряжения по каналу +5VDC, а также сильно возрастает уровень шума.

Данный источник питания хорошо приспособлен для работы в современных системах, поскольку имеет высокую практическую нагрузочную способность по каналу +12VDC, а также может функционировать на максимальной мощности без потери работоспособности.

Действительно, перед нами бюджетный продукт, но с учетом некоторых нюансов он вполне пригоден для использования в системах невысокой мощности.

Полный текст статьи читайте на iXBT