Зачем расшифровывать гены яблок и сладкой кукурузы

(Нет, не только чтобы побыстрее вас накормить)

Генетическая расшифровка показывает, в какой последовательности расположены нуклеотиды — «кирпичики» в составе ДНК. Расшифровки не только расширили наше понимание мира, но и оказались полезны на практике — в том числе в сельском хозяйстве.

Рассказываем, как появилась эта технология и чего добилась селекция растений благодаря ей.

Как всё началось

Первые селекционные эксперименты поставили наши предки. Они подмечали, какие плоды были более сладкие или крупные, а затем выбирали семечки именно из них и сажали, чтобы новый урожай был лучше предыдущего. Затем долгое время растения пытались скрещивать «вручную»: например, подсаживая черенок одного вида к другому. Кардинально селекция изменилась, когда в 1953 году биофизик и рентгенограф Розалинд Франклин и молекулярные биологи Джеймс Уотсон и Фрэнсис Крик открыли структуру ДНК.

Джеймс Уотсон и Фрэнсис Крик с моделью двойной спирали ДНК

Джеймс Уотсон и Фрэнсис Крик с моделью двойной спирали ДНК

Учёные выяснили, что в ДНК содержится подробная генетическая информация об организме — это стало прорывным открытием. Но ДНК мало прочитать: чтобы код стал полезен генетикам, последовательность нуклеотидов ещё нужно расшифровать. Делать это научились лишь спустя 20 лет.

В 1977 году биохимик Фредерик Сенгер придумал расщеплять различными химическими веществами микроорганизмы в пробирках, затем он разделял содержимое и фотографировал получившиеся фрагменты. Учёный вводил в пробирку четыре стандартных и четыре модифицированных нуклеотида: он изменял их так, чтобы разбить связь между нуклеотидами. Содержимое пробирок он разделял электрофорезом в специальном полиакриламидном геле. Затем Сенгер фотографировал результат — и по снимку изучал последовательность нуклеотидов.

Свой первый эксперимент Сенгер провёл на расшифровке полного генома бактериофага φX174 — одноклеточного ДНК-вируса из 5 тысяч спаренных оснований. Он выбрал его неслучайно: это один из простейших организмов, так что его получилось расшифровать даже с технологиями 1970-х. Но это было только начало. Успешно протестировав метод на бактериофаге, учёные переключились на более сложные организмы.

Геном бактериофага φX174 — первый расшифрованный геном в истории науки

Позже метод Сенгера позволил расшифровать человеческую митохондриальную ДНК из 16 тысяч спаренных оснований. Это молекула, которая находится в «энергетических станциях» клеток и составляет 5% всего человеческого ДНК. В 1980 году за своё открытие Фредерик Сенгер получил Нобелевскую премию по химии.

Следующим значимым шагом стала расшифровка в 1996 году организма с клеточными ядрами — эукариота. Расшифровать смогли геном пекарских дрожжей Saccharomyces cerevisiae — он состоял уже из 12 млн спаренных оснований. Расшифровка эукариотов позволила продвинуться в изучении растений и животных. Позже учёные расшифровали геномы овощей, фруктов и даже человека — он состоит из 3 млрд спаренных оснований.

Метод был трудоёмкий и неточный: образцы слипались, проанализировать их было сложно. С тех пор процесс сумели автоматизировать:

  1. Молекулу ДНК разрезают специальными молекулярными ножницами по технологии CRISPR/Cas9: она представляет собой комбинацию специальных белков и молекул РНК, которые распознают и «разрезают» ДНК.

  2. Частицы помещают в копировальное устройство, которое делает дубликат каждого сегмента. Из них составляют библиотеку ДНК.

  3. Библиотеку загружают в компьютер-расшифровщик. Он анализирует миллионы полученных фрагментов, а затем собирает их в разных вариациях, учитывая правила совместимости нуклеотидов (в ДНК их четыре типа, и они могут соединяться друг с другом только определёнными парами).

  4. Готовые вариации снова комбинируются — получается конечная последовательность.

Скорость такой расшифровки не слишком высока. И только в 2021 году учёные из Стэнфорда установили на тот момент мировой рекорд, расшифровав большую часть человеческого генома за 5 часов и 2 минуты.

4852f4c5656f404ba2e320d06af85abb.png

В проекте «Геном человека» расшифровывали данные разных людей, поэтому готовая расшифровка — общая мозаика, не представляющая ни одного индивидуума. Польза проекта в том, что подавляющая часть человеческого генома одинакова у всех людей. Объём расшифрованного генома человека за 20 лет: каждый раз расшифровывали разные фрагменты генома. Жёлтым выделены 50% расшифровки, голубым — 90%, розовым — 99%, а чёрным — полностью расшифрованные сегменты.

Прогресс — заслуга нанопоровой расшифровки, открытой в 2021 году.

Образец помещают в специальное устройство с мельчайшими порами, и, пока фрагменты ДНК проскальзывают сквозь них, компьютер считывает их код. Таким образом прочитывается каждый нуклеотид.

Мембраны с нанопорами

Мембраны с нанопорами

Метод не требует расщепления ДНК и отдельного анализа нуклеотидов, а сама последовательность определяется всего по одной молекуле. Поэтому постепенно этот способ замещает прошлые.

Специалисты Стэнфордского университета за расшифровкой генома

При чём тут кукуруза

Детальки пазла из расшифрованных генов можно сочетать в необходимой последовательности, таким образом создавая новые — модифицированные — варианты растений. Специалисты могут вносить точечные изменения в геном растения — скажем, усиливать признаки, отвечающие за устойчивость к холоду и вредителям. Именно так уже улучшили кукурузу, сделав крупнее, слаще, сочнее и удобнее для чистки.

До изобретения генетической модификации растений селекция одного растения могла занимать сотни лет. Хороший пример — кукуруза.

До изобретения генетической модификации растений селекция одного растения могла занимать сотни лет. Хороший пример — кукуруза.

Расшифровка геномов необходима и для профилактики заболеваний. Генетики также расшифровывают разные патогены. На их основе создали препараты для обработки растений: чтобы зёрна, овощи или фрукты при перевозке не портились от попадания на них вирусов и бактерий.

Но определение последовательности нуклеотидов — лишь первый шаг к модификации. После генетиков свою работу выполняют селекционеры: изучают расшифровку и экспериментируют с разными изменениями — не все попытки могут увенчаться успехом. Экспериментальные сорта всегда тестируют на земле, и пока новый сорт не начнёт отвечать заявленной цели, могут пройти годы.

Как менялись помидоры: слева — дикие томаты, в центре — одомашненный вариант, справа — более крупный генетически модифицированный сорт

Как менялись помидоры: слева — дикие томаты, в центре — одомашненный вариант, справа — более крупный генетически модифицированный сорт

Что уже улучшили селекционеры

Предлагаем испытать удачу и принять участие в викторине. Пишите свои ответы в комментариях к статье, позже мы опубликуем ответы.

Викторина 1

Викторина 1

Викторина 1: угадайте, это геном какого растения?

  1. Апельсин

  2. Банан

  3. Яблоко

  4. Ананас

Викторина 2

Викторина 2

Викторина 2: что за овощ?

  1. Картофель

  2. Помидор

  3. Лук

  4. Сельдерей

Викторина 3

Викторина 3

Викторина 3: чьё зёрнышко?

  1. Рожь

  2. Кукуруза

  3. Ячмень

  4. Пшеница

Расшифровка геномов и последующая модификация растений способны создать сорта, менее требовательные к объёму воды и почв, но при этом даже более урожайные. Они пригодятся фермерам, если температура на Земле продолжит расти такими же темпами, как сейчас.

Есть и другой возможный тренд — выращивание искусственного мяса в пробирке. Если специалисты сделают его дешевле, то человечество не только сможет перестать выращивать скот в качестве еды, но и получит свободное пространство, которое сейчас занимают животноводческие фермы.

© Habrahabr.ru