Всероссийская инженерная олимпиада для старшеклассников: Космические системы
Второй отборочный этап проводится в командном формате в сети интернет в рамках онлайн-симулятора полета и посадки космических аппаратов «Орбита». Продолжительность второго отборочного этапа — 2 недели. Работы оцениваются автоматически средствами онлайн-симулятора. Задачи носят междисциплинарный характер и в более простой форме воссоздают инженерную задачу заключительного этапа, участники должны были писать программы полета на языке Python.
Объем и сложность задач этого этапа подобраны таким образом, чтобы решение всех задач одной командой было маловероятно. Это призвано обеспечить более осознанный выбор решаемых командой задач. Решение каждой задачи дает определенное количество баллов.
Некоторые задачи могут приносить разное количество баллов — в зависимости от качества и скорости их решения, ряд задач предполагает штрафы за число попыток. В данном этапе используется другая система оценки, теоретически можно получить суммарно от 0 до 74510 баллов.
Все условия задач доступны участникам с первого дня второго отборочного этапа.
Команды могут выполнять задачи в любом порядке. Часть задач допускают неограниченное число попыток сдать решение (запусков), другие задачи предполагают штрафные баллы за превышение числа доступных попыток.
Примеры задач
Задача 2.1 «Посадка на Луну» (макс. 180 баллов)
Луна — ближайший к Земле астрономический объект. Посадка корабля на Луну — это самое простое задание, с которым человечество справлялось уже не раз. Создание и запуск аппарата для исследования лунной поверхности состоит из нескольких этапов. В этой задаче мы мы рассмотрим только один, но самый интересный этап — посадку аппарата. Вам придется сконструировать собственный аппарат и составить техническое задание на его производство, дождаться результатов полета и получить телеметрию процесса посадки.
Успешно посадить аппарат с первой попытки не просто. В случае неудачи вам предстоит проанализировать данные телеметрии и изменить техническое задание для следующего запуска.
Постановка задачи
Это только первая, тренировочная задача, поэтому в ней есть несколько допущений: аппарат падает вертикально на поверхность Луны, его начальная скорость равна нулю, а из доступного оборудования есть только демпфер и тормозной двигатель.
Задача состоит в том, чтобы определить, в какой момент времени t1 нужно включить тормозной двигатель, чтобы к моменту посадки t1+t2 скорость корабля была бы меньше 50 м/с, иначе удар не удастся самортизировать с помощью демпфера.
Другими словами, вам нужно вычислить два параметра — время включения тормозного двигателя и время его выключения — и вставить их в программу полета аппарата.
Все исходные данные известны: это начальная высота, масса и радиус Луны, масса аппарата, сила тормозного двигателя.
Полный текст задачи на стр. 293
Задача 2.2 «Посадка на Марс» (макс. 1650 баллов)
Красная Планета — намного более сложный объект для посадки космического аппарата, чем Луна. Во-первых, Марс намного массивнее, а значит сила тяжести играет куда большую роль. Во-вторых, на Марсе есть атмосфера, так что влияние сопротивления атмосферы на движение корабля около поверхности будет значительным.
В этой задаче также не будет рассматриваться работа аппарата на поверхности. В вашем распоряжении снова будет полностью сконструированный аппарат, но вам придется самостоятельно запрограммировать его полет: выбрать, в какой момент нужно будет включить тормозной двигатель, открыть парашют и т. д.
Анализ телеметрии позволит исправить ошибки, допущенные при посадке, уже в следующем аппарате.
Постановка задачи
По сравнению с Луной задача усложняется: теперь придется работать в двух измерениях. У аппарата есть начальная горизонтальная (орбитальная) скорость. К тому же, теперь на аппарат действует не только сила тяжести, но и сила аэродинамического сопротивления (Стокса), пропорциональная квадрату скорости аппарата. Однако, и в этой задаче есть упрощение: поверхность планеты принимается за плоскость. Также вам будет доступна специальная программа для расчетов.
Условие задачи делает аналитическое решение очень сложным, поэтому мы предлагаем вам качественно оценивать значения скоростей и сил, а также тщательно анализировать результаты неудачных полетов.
Полный текст задачи на стр. 297
Задача 2.3. «Работа на поверхности Марса» (макс. 20000 баллов)
Конструирование аппарата
Мы предлагаем вам продолжить миссию по покорению Марса разработкой аппарата для работы на поверхности планеты. Совершив удачную посадку, ваш аппарат начнет передавать на Землю научные данные, которые позволят углубить знания человечества о Красной планете.
Условия победы:
За успешное решение этой миссии вы получаете победные баллы. В этой миссии вы получаете баллы за переданную на Землю научную информацию следующим образом: За каждый переданный на землю 1 Мегабит (1000 килобит) научной информации команда получает 0,1 балла (другими словами, количество баллов = переданная информация/1000). Вам дается 10 попыток. Каждая дополнительная попытка сверх этих десяти отнимает у команды 30 баллов. Таким образом можно получить не более 30 дополнительных попыток (т. е. Минус 900 баллов).
В миссии также возможны следующие достижения:
- Исследователь — Передать научные данные с Марса любого объема (100 балл.)
- Первопроходец — Первыми по времени передать научные данные с Марса (200 балл.)
- Доставка оборудования — Самый тяжелый аппарат, севший на Марс и передавший данные (300 балл.)
- Экономичность — Самый легкий аппарат, севший на Марс и передавший данные (500 балл.)
- Космическая гонка — Передать научные данные с Марса в течение первых трех суток с момента получения задачи командой (300 балл.)
- Надежная конструкция — Аппарат проработал на Марсе все 72 часа (200 балл.)
Постановка задачи
Если с точки зрения физики задача остается прежней, то конструкторская ее часть будет заметно сложнее. Вам предстоит полностью сконструировать аппарат и составить программу не только посадки, но и планетарной активности. Аппарат может проработать на поверхности Марса не более 72 земных (!) часов.
Вам не придется конструировать произвольный аппарат с нуля. В вашем распоряжении будет аппарат сферической формы, его размер вы можете установить самостоятельно. Вам придется рассчитать требуемые внешние параметры аппарата (массу и радиус), выбрать необходимое для работы оборудование и научные приборы.
Мы рекомендуем следующий порядок разработки:
- сконструировать аппарат с максимальной полезной нагрузкой и посадить его;
- наполнить полезную нагрузку необходимым оборудованием для обеспечения максимальных научных результатов.
Конструкция аппарата и программа полета должны учитывать уровень энергоснабжения в корабле, чтобы всем системам хватало энергии, а также пропускную способность систем связи, чтобы информация могла быть передана на Землю в нужном объеме.
Помимо конструкции аппарата вам предстоит разработать программу полета, например, определить время, когда должны включаться и выключаться тормозные двигатели или научные приборы.
Полные данные по задаче на стр 305.
Задача 2.5 «Связь с Землей» (макс. 520)
КА движется по круговой орбите с заданной высотой в плоскости X0Y. Необходимо запрограммировать аппарат так, чтобы он передал на Землю заданное сообщение. При этом необходимо воспользоваться высокопроизводительной связью КА. Задача усложняется двумя факторами: сигнал экранируется Землей, антенна такой подсистемы имеет угол раскрыва (γ), заданный в параметрах КА.
Мы будем считать, что наземный измерительный пункт (НИП) отслеживает положение КА, поэтому потребуется только сориентировать аппарат на НИП.
В данной миссии вам не потребуется конструировать аппарат целиком, однако нужно будет подобрать несколько параметров конструкции аппарата — площади солнечных батарей и радиаторов, а также написать программу полета. Мы рекомендуем вам использовать наработки, полученные в предыдущей миссии.
КА оснащен подсистемой ориентации и стабилизации, которая позволяет задавать момент вращения посредством включения маховика, а также подсистемой высокопроизводительной связи, параметры которой указаны в таблице ниже. КА как и в первой тренировочной миссии в начале полета будет иметь стартовую угловую скорость, которую придется погасить для успешного выполнения миссии.
При конструировании аппарата вам необходимо рассчитать и указать площади для солнечных батарей и радиаторов на гранях 1–4 аппарата и площади радиаторов на гранях 5–6 аппарата, например:
Полный текст задачи на стр. 321
Задача 2.7 «Съемка Земли из космоса» (макс. 12500 баллов)
Задача «Съемка Земли из космоса» посвящена съемке поверхности Земли из космоса малым космическим аппаратом. Вы должны будете сфотографировать объект на поверхности Земли и передать полученное изображение на наземный измерительный пункт (НИП), используя высокопроизводительную связь.
Полный текст задачи на стр 332
Задача 2.8. «SMS везде» (макс. 9200 баллов)
Задача «SMS везде» воссоздает работу спутника связи, который должен обеспечить прием и передачу сообщений между 18 наземными станциями (которые называются »0»,»1»,»2» и т.д.).
В вашем распоряжении будет 10 стартовых запусков. За каждый запуск после 10-го будет добавляться штраф в 150 баллов за запуск, и так до 20 дополнительных запусков (до -3000 баллов).
Постановка задачи
Каждое конструкторское бюро получает уникальный вариант, который содержит: стартовую высоту орбиты; список и названия наземных измерительных пунктов; таблицу сообщений для передачи (всего 5 сообщений).
КА должен последовательно доставить максимальное число сообщений, указанных в таблице. Как только аппарат получил сообщение от НИП, начинается отсчет времени доставки, которое не должно превысить допустимое время передачи.
На миссию дается 6 часов полета аппарата.
Полный текст задачи на стр 337