Солнечная батарея на балконе: использование аккумуляторов
Привет geektimes.
Данная статья является продолжением предыдущей части, про опыт установки 100-ваттной солнечной батареи на балконе. В первоначальном варианте к батарее был подключен DC-DC преобразователь, от которого можно заряжать различные домашние устройства. Следующим шагом было решено добавить возможность накопления энергии для использования в вечернее и ночное время.
Что получилось, подробности под катом.
Теория
Как говорилось в предыдущей части, несмотря на не оптимальные углы установки и малое количество панелей (2×50Вт), солнечная панель в принципе работает. Но дальше возникает вопрос что делать как эту энергию использовать.
Вариантов несколько:
1) Использовать энергию только по мере надобности, например для зарядки планшета. В плане КПД это самый плохой вариант — днем когда светло, все на работе, да и использовать 100-ваттную панель для зарядки телефона слишком избыточно — 95% светлого времени солнечная панель стоит неподключенной.
Опционально, можно просто подключить готовый USB power bank, например на 10000 мАч. Работать будет, но решение во-первых, неинтересное в плане творчества, во-вторых, максимальная мощность для зарядки по USB около 10Вт, т.е. уже для 50-ваттной панели большая часть энергии будет пропадать впустую (хотя для пасмурной погоды сойдет). Ну и в-третьих, выбор подключаемых по USB устройств не так уж велик.
2) Отдавать энергию в электросеть (технология grid tie), чтобы она использовалась другими электроприборами. В принципе, это современный и наиболее используемый в частных домах вариант. Очень удобно, ничего не пропадает, все что сгенерировалось, отдается в сеть, количество требуемых компонентов минимально. Для моего балкона оно увы, не заработало — рекомендуемая мощность панелей для нормальной работы инвертора от 200Вт, а увеличивать число панелей еще в 2 раза уже не входило в бюджет. Да и экономического смысла большого не было — окна выходят на восток, и прямые солнечные лучи попадают на них только утром до 11–12 часов дня.
3) Накапливать энергию в аккумуляторе. Раз первые два способа не подошли, это единственное что остается делать.
Плюсы очевидны:
— Возможность использования запасенной энергии в любое время.
— Возможность подключения к батарее более мощной нагрузки (например электродрель не заработает от солнечной панели, а от аккумулятора легко).
— Возможность использования разнообразных устройств, рассчитанных на 12В — светодиодные лампы, зарядки для ноутбука и пр.
— Опциональная возможность подключения инвертора на 220В, и как бонус, появление в доме резервного источника питания на случай отключения электричества.
Минус тоже очевиден: батареи в таких системах это самый недолговечный, весьма дорогой, да и экологически вредный компонент. Но последний минус мы наоборот обратим в плюс — батареи могут использоваться повторно (примерно то же, что по слухам, делает Маск в своих Tesla Powerwall).
Полезных для нас видов аккумуляторов мы выделим два:
— Свинцовые и их разновидности: гелевые, щелочные, автомобильные, от UPS и пр. Дешевы, пожаробезопасны, но на этом плюсы заканчиваются. Количество циклов невелико, масса и габариты неудобны. В то же время, это самый дешевый и простой вариант — и дешево, и просто, и «накосячить» тут невозможно. Цена контроллера заряда на eBay менее 1000р, аккумулятор можно купить в любом ближайшем магазине.
— Литиевые. Их много разных видов, и запутаться куда легче.
«Традиционные» литий-ионные: напряжение 3.7В, максимальное напряжение зарядки 4.2В, минимальное напряжение 3.0В. Не любят перезаряда (число циклов снижается кардинально), и гипотетически (при отсутствии защиты и нарушении режима эксплуатации) пожароопасны.
Литий-железо-фосфатные (LiFePO4): напряжение 3.2В, максимальное напряжение зарядки 3.65В, минимальное напряжение 2В. Пожаробезопасны, судя по тестам, даже при КЗ лишь воняют, но не горят.
Литий-титанатные (Li4Ti5O12): напряжение 2.4В, максимальное напряжение зарядки 2.85В, минимальное напряжение 1.8В. Пожаробезопасны, плюс имеют большое количество циклов (по разным источникам, от 7000 до 15000), что делает их практически «вечными». Минус в том, что напряжение минимально, да и купить их непросто.
Более подробно описание разных видом, с их плюсами и минусами, можно почитать здесь: http://batteryuniversity.com/learn/article/types_of_lithium_ion. Очевидно, что каждому типу аккумуляторов нужен свой режим заряда, и в общем случае зарядные устройства несовместимы с разными типами ячеек, если в настройках нет возможности выбора. Попытка зарядить LiFePO4 обычным зарядником «для лития» до напряжения 4.2В просто испортит батарею.
В итоге, из всего разнообразия, было решено остановиться на самом простом и проверенном варианте: батареях форм-фактора 18650.
— Это самый популярный форм-фактор, такие батареи используются в ноутбуках, шуруповертах, powerbank-ах и пр.
— Такие батареи легко достать, например из б/у ноутбучных батарей, в которых обычно выходит из строя только несколько ячеек, а остальные вполне работоспособны.
— Как следствие предыдущего пункта, повторно используя батареи, мы не только не вредим экологии, а наоборот, даем элементам вторую жизнь.
Здесь можно подробно посмотреть на тестирование таких батарей:
Элементы 18650 несложно купить и новые, а при покупке большими партиями цена батарейки может составлять меньше доллара за штуку. Это позволяет энтузиастам создавать системы типа таких:
или даже таких (фото с youtube):
Кстати, если кому интересно посмотреть на более-менее профессиональный подход к сборке батарей, делается это так:
Для балкона, столько разумеется не надо. Батареи напряжением 12В и емкостью 8–10Ач для первой итерации вполне достаточно. При желании число элементов можно будет потом увеличить.
В качестве нагрузки планируется во-первых, зарядка всевозможных девайсов, во-вторых, использование 12-вольтовой LED-лампы в качестве вечернего освещения. Дальше будет видно, в зависимости от того сколько энергии удастся собирать.
Практика
Для сборки системы нам потребуется ряд компонентов. Все довольно-таки дешевое, космических цен здесь нет.
1. Контроллер заряда
Контроллер является логическим центром всей системы, он берет энергию от солнечных батарей и заряжает ею аккумуляторы, также включает и отключает нагрузку, если батареи слишком разрядились. Цена вопроса от 15$ за дешевый контроллер как на фото, этого вполне достаточно. Главное чтобы в контроллере была возможность настраивать напряжение батареи, т.к. напряжение литиевой батареи отличается от свинцовой.
2. Аккумуляторы 18650
У меня не стоял вопрос как максимально сэкономить, поэтому я просто заказал 6 штук на eBay.
По идее, если поспрашивать в сервис-центрах, то старые ноутбучные батареи можно найти практически даром, единственное что для их тестирования понадобится измеритель емкости, цена вопроса около 4$:
Уже заказав аккумуляторы, я понял что проще было-таки купить батарею от ноутбука: ячейки там уже с припаянными выводами, присоединить их было бы проще, да и цена была бы чуть ниже. Видео как аккуратно разобрать батарею, можно посмотреть здесь:
А так, пришлось купить еще держатели для аккумуляторов, впрочем стоят они недорого. Как вариант, можно купить аккумуляторы с уже припаянными пластинами, стоят они чуть дороже.
Кстати, если кто-то решит брать аккумуляторы 18650 на eBay, стоит иметь в виду, что их реальная емкость 2000–3500 мАч. Батарей емкостью 9900 мАч и выше, не бывает, то что продается на ебее с такой надписью — китайский фейк.
Реальная емкость таких батарей видна на скриншоте с видео от одного из покупателей:
Такую батарею стоило бы взять, только если расчитывать открыть диспут и получить возврат денег от продавца (жуликов надо наказывать). Только месяц ожидания того не стоит, да и батарея с емкостью 500 мАч годится только для мусорного ведра.
3. BMS
Чтобы ячейки в батарее заряжались корректно, нужна плата BMS — battery management system. Плата обеспечивает равномерный заряд ячеек, а также отключает заряд/разряд при выходе напряжения за границы допустимых.
Искать проще на eBay по словам 18650 Protection Balance Board. Причем в названии важны оба ключевых слова: есть платы Protection Board, в которых нет балансира ячеек, нам они не подойдут. Есть платы с балансиром, но без защиты — такие в принципе подойдут, т.к. пороги напряжений уже задаются в контроллере, но лучше перестраховаться.
На схеме условно показаны 3 аккумулятора, в реальности их можно параллелить, и вид батареи может быть примерно такой:
Не является обязательным, но вполне удобным является прибор для контроля напряжения ячеек, цена вопроса так же около 5$. Он же может работать как балансир ячеек.
Теперь соберем это в кучу, и как говорится, со всем этим попытаемся взлететь. Статья и так получилась большой, так что продолжение в следующей части.
Аналогичный эксперимент от других пользователей можно посмотреть например здесь:
https://www.youtube.com/watch? v=YoH7V56RtkM
https://www.youtube.com/watch? v=aiVGOEH-T4U
https://www.youtube.com/watch? v=Pnrxm3KNjes
PS: Вместо заключения: про безопасность литиевых батарей
В интернете ходит много страшилок о пожароопасности литиевых батарей, да и случаи возгорания действительно иногда случаются, последний epic fail c телефонами Samsung тому пример. Насколько безопасна описанная выше батарея? Еще раз напомним, что ячейки 18650 массово используются в ноутбуках, так что эксплуатация такой системы ничуть не более опасна, чем использование ноутбука, включенного в розетку. Даже более того, элементы здесь имеют лучший температурный режим, чем в закрытом корпусе ноутбука, а защита от перенапряжения является двойной (настройка напряжения в контроллере заряда + наличие платы защиты).
Но разумеется, при создании самодельных девайсов важно помнить, что литиевые батареи запасают в себе достаточно много энергии, так что их важно защитить от короткого замыкания, детей, домашних животных и пр. Также при использовании б/у батарей их следует отобрать и протестировать на емкость и токи заряда/разряда.