Системы слежения за полетом ракеты

7ba81029f49b4969a346023fb2df7dd2.jpg
Когда ракета-носитель отрывается от стартовой площадки и начинает свою недолгую, но яркую жизнь, за ней следят не только фанаты космонавтики по интернет-трансляции. Специальные устройства в разных диапазонах принимают данные с борта, все ли в порядке, измеряют траекторию полета, фиксируют полет в оптическом диапазоне и отслеживают траекторию падения отработавших ступеней и сброшенного головного обтекателя.

Радиоуправление


На заре ракетной техники только радиокоррекция с Земли могла обеспечить требуемую точность наведения межконтинентальной баллистической ракеты. Поэтому и в США для «Атласов» и в СССР для «Р-7» пришлось строить пункты управления дальностью. В СССР это были капитальные строения, в которых антенна пеленгатора стояла в трехэтажном павильоне:

167c24e5afc141f8aaeb735a6887750d.jpg

Павильоны дополнялись мобильными пунктами измерения дальности:

fbf391eda1fb4e729b93507d246c9b6c.jpg

На самой ракете сигнал от наземных пунктов принимался на специальные подвижные антенны и через них же отправлялся обратно:

f50fc29d6bba47a1a62c8d13a334004e.jpg

Система радиокоррекции могла определять скорость с точностью 0,5 м/с, а дальность с ошибкой не больше 50 м. Но уже в начале 60-х инерциальные системы достигли сравнимой точности, и от наземных пунктов отказались.

Телеметрия


Лучший способ узнать, что происходит на ракете — поставить на нее датчики и в режиме реального времени отсылать информацию на землю. Аварии развиваются быстро, и часто только последние миллисекунды могут сказать о причине случившегося. Поэтому каждая ракета-носитель несет на себе систему телеметрии и антенны передачи ее на землю. На земле же стоят приемные комплексы. Золотая эра советской космонавтики прошла под знаком системы телеметрии «Трал», характерные антенны которой легко узнаваемы на первых космических аппаратах:

5dbccda4c3a84fac8db6862fe3c0c3c4.jpg
«Спутник-3», антенна «Трала» — загогулина, похожая на кипятильник, на первом плане

На земле же стояли сначала односпиральные антенны:

2bbf479c0905471285e1e39cd5577638.jpg

Затем появились футуристические четырехспиральные антенны:

fcaa5669763640fa8ed6466b116e1e95.jpg

Первоначально телеметрические данные писались на кинопленку. Это было просто, но пленки нужно было проявлять, и даже очевидные причины аварии определялись не сразу. Затем стали использовать магнитные ленты, а сейчас телеметрию пишут в цифровом формате. После аварии РН «Falcon» в твиттере Маска говорилось о проблемах извлечения последних кадров телеметрии HEX-редактором. Возможно, это говорит о том, что телеметрия «Falcon'а» писалась не совсем в реальном времени.

Забавно, что мода на четырехспиральные антенны не ограничивалась одним полушарием Земли — за океаном стояли похожие системы:

c1bbda71cf0148419255812a61b0cadd.jpg
Система телеметрии спутников Telstar

А сейчас телеметрию стартующих «Союзов» принимают на комплекс МКА-9 с антенной «Ромашка»:

aae2a732175746f98d554d1e22bf904e.jpg

Траекторные измерения


Траекторные измерения позволяют определить параметры полета ракеты-носителя, а также они используются для измерения параметров орбиты спутников и пилотируемых кораблей. Как правило, системы траекторных измерений могут работать в двух режимах. В первом фиксируется сигнал ответчика на космическом аппарате, а во втором система работает как обычный радар, измеряя параметры отраженного от цели радиосигнала. В СССР на заре освоения космоса использовали систему «Бинокль»

c5c8fd74b1d04701acc778e5b7643a7e.jpg

А затем создали более совершенную систему «Кама»

fa96fdb7ac344848a3d287f5eaa66fdd.jpg
Мобильный вариант

В США же со времен «Меркуриев» и практически до сего дня используется радар AN/FPS-16:

a6b5ada690d64fa1b1e39c8126687ab0.jpg

Его точность по дальности достигает 5 м, а по направлению — 0,1 миллирадиан, и это для объекта на орбите!

Системы аварийного подрыва


В советских/российских космических традициях принято в случае аварии выключать двигатели ракеты — в степях Байконура ракета может падать спокойно, не рискуя свалиться кому-нибудь на голову. В США же пуски выполнялись из густонаселенной местности, и в случае аварии необходимо было быстро разрушить ракету на неопасные куски. Для этого на всех ракетах стоят специальные системы подрыва. Ненаправленные антенны готовы принять сигнал при любом положении кувыркающейся ракеты, а расположенные в нужных местах небольшие заряды взрывчатки эффективно ее разрушат. С земли же эта система контролируется с внешне ничем не примечательного трейлера:

d3483ba133ec4ad2b7e691db556d4ef2.jpg

Оптические системы


Весьма полезны могут быть наблюдения в оптическом диапазоне. Например, можно наглядно убедиться, что боковые блоки ракет семейства «Р-7» отошли нормально:

591573b7ccfc4edebfe27a923c168ec5.jpg

Для сравнения современные кадры с подобной системы на космодроме Куру:

b845a7d5e4b944feb671d188dbcfec26.gif

В СССР первоначально использовались кинотеодолит КТ-50 и кинотелескоп КСТ-80. Оба телескопа наводились по уже знакомой системе «Бинокль»:

b9fe7f00ee72415aa35e6e51e31362e2.jpg

Из более современных известна система «Сажень-Т»:

86c571ab864b4836961f454cd3f6c64e.jpg

В США сейчас используются оптические системы нескольких фирм. Contraves-Goerz:

363dd89bb7be4b73ac0a04263933bbcd.jpeg

FlightLine:

9424dc743a7b418a9687705a019288cb.jpg

ad86d91fee6b4e379064978c96173356.jpg
Обратите внимание на антенны под телескопом — они обеспечивают наведение и автосопровождение цели, а еще с их помощью можно получать телеметрию и держать голосовую связь с экипажем

MARS:

b629b7201bb24050b17e62ca2a19814e.jpg

907768b8d0fb4971bb46cea04a9f6377.jpg
Обратите внимание на установку с плоскими антеннами справа

Оптические системы оказались очень полезны при расследовании катастрофы шаттла «Колумбия». Именно они зафиксировали удар отвалившегося куска теплоизоляции по передней кромке левого крыла:

02bc07c07785492f94ca9666ab59a417.jpg

Кроме задач NASA эти же телескопы использовались для фиксации прыжка Феликса Баумгартнера, они же снимали полеты и катастрофу SpaceShipTwo.

019925536545493b8f1c9b9c8ae2bb73.jpg
SpaceShipTwo в полете, фото с телескопа MARS

Кроме радиоантенн оптические системы могут дополняться лазером. В этом случае к телескопу и фотометру добавляется полезная функция лазерного дальномера:

e19cf004069948379f71e6cb0f0ed837.jpg
Работает «Сажень-Т». Точность измерения расстояния до спутника — до двух сантиметров!

Системы фиксации падения отработанных ступеней


Интересным подвидом траекторных систем являются системы фиксации падения отработанных ступеней. Для России это новое направление — на Байконуре первая ступень падает в степь, и ее можно легко обнаружить. И часто бывает так, что местные жители увозят ступень на металлолом раньше, чем на место падения прибывают специалисты Роскосмоса. С новым космодромом «Восточный» так не получится — ступень будет падать в тайгу, и найти ее без знания точных координат будет очень сложно. Поэтому сейчас проходят испытания систем фиксации мест падения:

Помните плоские антенны на фотографии с MARS? Здесь хорошо виден аналогичный радар, который на «Восточном» будет применяться для слежения за сброшенным головным обтекателем.

Дополнительная информация

Очень интересный фильм о ракете Р-7

Много материала было взято с сайта КИК-СССР.

По тегу «незаметные сложности» — ракеты и спутники, стартовые сооружения и орбиты и много чего еще.

Уфимцы! На этой неделе, 25-27 сентября будет Фестиваль Науки. Не забудьте, там будет масса интересного.

© Geektimes