Прогнозирование химических реакций с использованием алгоритмов машинного перевода

ehlk7ivi2oyvwoeivo9zs0pkbse.jpeg

1. Schwaller P, Gaudin T, Lanyi D, Bekas C, Laino T. «Found in Translation»: Predicting Outcomes of Complex Organic Chemistry Reactions using Neural Sequence-to-Sequence Models. ArXiv171104810 Cs Stat [Internet]. 2017 Nov 13 [cited 2017 Dec 14]; Available from: arxiv.org/abs/1711.04810
2. Corey EJ, Wipke WT. Computer-Assisted Design of Complex Organic Syntheses. Science. 1969;166(3902):178–92.
3. Segler MHS, Waller MP. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chem — Eur J. 2017 May 2;23(25):5966–71.
4. Метод Монте-Карло для поиска в дереве [Internet]. [cited 2017 Dec 14]. Available from: habrahabr.ru/post/282522
5. Kayala MA, Baldi P. ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning. J Chem Inf Model. 2012 Oct 22;52(10):2526–40.
6. Nam J, Kim J. Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions. ArXiv161209529 Cs [Internet]. 2016 Dec 29 [cited 2017 Dec 14]; Available from: arxiv.org/abs/1612.09529
7. Found in Translation: Neural Networks Predict Outcomes in Chemistry [Internet]. IBM Blog Research. 2017 [cited 2017 Dec 14]. Available from: www.ibm.comhttps://www.ibm.com/blogs/research/2017/12/neural-networks-organic-chemistry/
8. IBM Research — Zurich, Found in Translation chemistry app [Internet]. 2017 [cited 2017 Dec 14]. Available from: www.zurich.ibm.com/foundintranslation

© Geektimes