Пример расчета для электрощитка
Домашняя электросеть Part Deux
В этой статье я хочу привести пример выбора оборудования для щитка в квартире, условное продолжение предыдущей статьи (некоторые теоретические моменты были там рассказаны более полно). Потому такой подзаголовок.
Исходные данные
Так как есть, по сути, множество возможных условий, то здесь я введу ряд ограничений, чтобы пример был более конкретный. Кому-то может повезти больше, кому-то меньше, но такова жизнь.
Итак, имеется однофазное электроснабжение, в щитке установлен счетчик с номинальным током 50 А. Энергокомпания разрешает максимальную мощность входного устройства с защитой от перегрузок 40 А. Вся проводка меняется полностью. Заменить проводку можно от исходных клемм счетчика (для этого следует вызывать монтера для снятия пломб). Если дом нормально спроектирован и построен, то уже от счетчика до щитка проложено что-то нормальное, вроде 4 мм² меди.
Как и в предыдущей статье, я исхожу из напряжения согласно нормам МЭК в 230 В.
Потребление
Важно определить, что будет потреблять и какие токи могут ожидаться. Для этого нужно составить список потребителей с их максимальным потреблением для определения сечения кабеля. Нужно понимать, что максимальная мощность подключения в приведенном выше случае составит всего 9200 Вт, потому одновременно включать все в электроплите (от 8800 до 10200 Вт) и потом еще утюг (до 2400 Вт) и пылесос (900–2000 Вт) не стоит. Здесь необходимо соблюдать баланс между удобством и возможностью и чем-то жертвовать.
В принципе нужно понимать, что как работает и с какой мощностью. Та же стиральная машина потребляет полную мощность первые 15–20 минут, пока идет нагрев воды и полоскание с порошком, далее мощность составляет 10–15% от заданной в паспорте. Так как это все очень индивидуально, то примем следующее для дальнейших расчетов крупных потребителей (из собственного опыта):
- стиральная машина 2300 Вт (загрузка 6 кг, новые модели)
- плита 9200 Вт
- электрочайник 2000 Вт
- утюг 2400 Вт
- пылесос 1600 Вт
Это было то, что касалось нагрузки. Теперь перейдем к токам короткого замыкания.
Токи короткого замыкания
Щиток
Как я упоминал в предыдущей статье, расчет покажет какую-то величину, которая в реальной жизни малоприменима, особенно, если сети, к которым подключен дом, уже не новые. В любом случае для получения данных, от которых можно отталкиваться для расчета, являются измерения. Существуют специальные устройства, которые по сути своей включаются в розетку и измеряют сопротивление сети до этой точки. Также устройство показывает расчетное значение тока короткого замыкания в месте измерения, но данную величину можно всего лишь использовать для общей оценки, так как она высчитывается исходя из текущих параметров (например, напряжения в сети). Потому за основу следует брать только измеренное сопротивление.
Само же измерение также не является окончательным ответом, так как токи короткого могут изменяться вследствие модификаций в сети, вроде ремонтов или замен оборудования, или изменения режимов в сетях среднего напряжения. Потому измеренной значение следует «ухудшить», чтобы гарантировать защиту даже на потом.
Есть ряд факторов, которые можно учесть, пересчитав измеренную величину.
Во-первых, измерение проходит в нормальных условиях, а при коротком замыкании провода разогреваются и из-за этого увеличивается их электрическое сопротивление.
Во-вторых, есть погрешность измерений самого прибора, которая в отдельных случаях могут быть до 30%.
В-третьих, влияние сети среднего напряжения. Максимальное изменение токов короткого замыкания в сети низкого напряжения из-за изменений в сети среднего напряжения составляет 10–12%.
Все эти факторы приводят к тому, что измеренное значение сопротивления следует увеличить в 1,6–1,7 раз.
Допустим, прибор показал величину 0,74 Ом и ток короткого замыкания 308 А при подключении на входных клеммах нашего щитка. Цифра довольно большая, теперь пересчитаем для худшего варианта.
Корректируем сопротивление сети:
Далее, считаем согласно МЭК 60038 минимальный ток короткого замыкания для сети до 1000В с изменением напряжения плюс-минус 10%
Как видно, минимальный возможный ток короткого замыкания почти в 2 раза меньше расчетного.
Для обычного бытового потребителя важен именно минимальный ток, так как для него время отключения критично. Если отключит минимальный, то максимальный проблем не составит.
Конечные потребители
Итак, у нас есть ток короткого замыкания на входе в щиток. Но встраиваемое там оборудование должно защищать провода по всей их длине, а не только возле щитка. Дальше есть два варианта: измерение или расчет. Так как я исхожу из полной замены проводки, то и токи короткого можно высчитать. В случае, если меняется щиток и только часть проводки, то советуют провести измерения и расчеты, как указано выше.
Итак, расчет. Имеет смысл его проводить перед началом работ и покупки проводов для оценки параметров в любом случае. Как исходные величины для сопротивлений возьмем максимальные допустимые величины сопротивлений из тех же стандартов МЭК (ниже приведены данные только по меди):
Сечение, мм² | Сопротивление, Ом/км |
---|---|
1,5 | 12,2 |
2,5 | 7,56 |
4 | 4,70 |
6 | 3,11 |
Далее расчет. Примем следующее: до нашей розетки нужно проложить 50 м кабеля от щитка. Допустим, что мы выбираем кабель сечением 2,5 мм² с сопротивлением 12,2 Ом/км. Сопротивление сети в точке подключения данной розетки составит:
Здесь есть несколько моментов, которые важно отметить. Сопротивление кабеля следует умножать на 2, так как сопротивление имеет два проводниках в проводе, и, хотя измеренное сопротивление является комплексной величиной, для расчета можно пренебречь реактивной составляющей. Также величины приведены в Ом/км в таблице, потому требуется пересчет в метры.
С помощью ранее приведенной формулы высчитываем минимальный ток короткого замыкания:
И из этого результата видно, что для гарантированного отключения нужно брать максимум С-автомат на 8 А или В-автомат на 16А.
Стандартными являются выключатели на 10 и 16 А (в общем-то неважно, какой тип). И если брать автоматы на 8 или меньше ампер, то может оказаться, что их цена в 1,5–2 раза выше. Это следует учитывать при планировании, так как исключить поломку выключателя нельзя, а искать потом тот же С4А на замену может быть дорого и банально сложно из-за их редкости. У некоторых производителей есть автоматы на 13А, но тут тяжело говорить о ценовой политике, кто-то делает, как и 10А, кто-то дороже.
Здесь важно вновь отметить — автоматы защищают только кабель, они не защищают от короткого замыкания то, что подключено в розетку.
Какие главные недостатки такого расчета? Мы не учитываем сопротивления клемм, например, или сопротивление устройств защиты. Их сопротивление маленькое, и в принципе добавив 0,1–0,15 Ом к расчету можно скомпенсировать эту неточность (в примере выше ток короткого будет 83А, что для данного случая роли уже не играет).
К сожалению реальны случаи (в постсоветском пространстве, по крайней мере), когда покупаешь кабель, а его реальное сечение меньше, чем написанное (например, 2,1 вместо 2,5 мм²). И если на одножильном проводе это еще проверить можно (штангенциркулем, например), то для многожильного провода можно забыть об этом. Здесь поможет только измерение.
Кабель продается большими отрезками, можно увечить длину, соединив последовательно все проводники. Так можно будет измерить и высчитать реальное сопротивление провода и в дальнейшем использовать эту величину для расчета и выбора автоматов.
Подбор устройств защиты по токам короткого и нагрузке
Вначале выполним расчет для подключения ряда потребителей, чтобы пример был более конкретный и начнем от более крупных потребителей к более мелким:
Электроплита
Проложен медный кабель 6 мм², от щитка до розетки 15 метров.
Ток короткого замыкания:
Возможен В-автомат на 32А или С-автомат на 16А (для плиты вполне нормально подойдет В-автомат, да 16А С-автомат маловат). Как я ранее писал, полная мощность плиты 9200 Вт, что означает 40А. Так как максимально возможный автомат 32 А, то нужно исходить из того, что все сразу включать нельзя. Что именно — зависит от потребления. В принципе для некоторых плит комбинация 2 конфорки и духовка дает 25 А, можно и так сделать.
Стиральная машина
Проложен кабель 2,5 мм², от щитка до розетки 30 метров.
Ток короткого замыкания:
Так как в машинке встроен электромотор, стоит выбрать С-автомат, в данном случае С10А.
Электрочайник
Проложен кабель 2,5 мм², от щитка до розетки 20 метров.
Ток короткого замыкания:
Так как электрочайник обычно не один там включен (это кухня), то здесь бы я советовал выбрать что-то вроде В16А-В20А.
Прочие электроприборы
Здесь речь идет в первую очередь об утюге или пылесосе (из упомянутых мною ранее крупных потребителей). В принципе их могут включить в любую розетку, потому в общем случае достаточно посчитать ток для самой отдаленной розетки (пример выше с 88,2 А и В16А именно тот случай). Если не выходит — нужно брать большее сечение, сделать надписи на розетках и предусмотреть специальные розетки для того же утюга (у пылесосов провода бывают достаточно длинные).
С одной стороны можно подобрать автомат под каждую розетку, с другой — иногда хочется унификации, да и проще при покупке кабелей и выключателей, здесь каждый решает для себя сам.
Для освещения расчет аналогичный, но тут чаще используется провод сечением 1,5 мм², так как клеммы в комплекте могут подходить для многожильного 2,5 мм² и то со скрипом. Но там и не такие большие токи, особенно если речь о светодиодном освещении.
Координация устройств в щитке
Итак, есть следующие важные данные:
- Вводное устройство максимум 40А
- Ток короткого замыкания в щитке 173,7 А
- Электроплита — максимум В32А
- Стиральная машина — С10А
- Розетки — В16А
Остальные устройства на данный момент не важны.
Итак, в первую очередь выберем вводное устройство. Для начала возьмем несколько различных типов выключателей на 40А (здесь и далее будет использоваться программа Siemens Simaris Curves, детальнее про программы я написал в конце статьи) и рассмотрим ситуацию для системы заземления TN.
На этом графике представлены ток короткого замыкания на входе в щиток и кривые выключателей типов В, С и Е. Последний еще известен, как «селективный автоматический выключатель» (селективный к ниже расположенным выключателям, так как отключает даже большие токи короткого с задержкой во времени). В данной системе (TN) время 0,4 секунды определяется для кабелей к розеткам, в то время как для распределительной сети (чем является сеть между вводным выключателем и выключателями на отдельные ветви) это время составляет 5 секунд. Во всех случаях время отключения слишком высокое, а именно более 5 секунд.
Решением в данном случае может стать использование разъединителя с плавкой вставкой. По сути обычный плавкий предохранитель, но с внешним видом, как автоматический выключатель. Выглядит следующим образом:
Взял для примера первую попавшуюся картинку из интернета, разъединитель от Hager со встраиваемыми предохранителями типа D02 («пробки»). На нем написано 63А, но так как типоразмер одинаковый, то в этот разъединитель можно установить любой предохранитель D02.
Итак, временно-токовая характеристика выглядит следующим образом (gG обозначает плавкий предохранитель общего назначения):
Максимальное время отключения 3,2 секунды, что соответствует нормам. Теперь посмотрим по селективности ниже, а именно сравним с В32, В16 и С10 с соответствующими, рассчитанными выше токами. Вначале В32 и плавкий предохранитель:
Здесь все хорошо, из графика явно видно время срабатывания каждого из защитных устройств. Естественно, что ситуация для маленьких выключателей будет лучше:
В целом существуют для каждого производителя таблицы селективности устройств защиты, например, как приведенная ниже.
Маленькая таблица для выключателей с характеристикой В, большая — С. Синим выделен номинальный ток выключателя, черный на светлом фоне — граничный ток селективности. Обе таблицы представляют селективность автоматических выключателей от Siemens к его же плавкому предохранителю 40А. Недостаток подобных таблиц — проверить все комбинации очень сложно, потому некоторые случаи даже не рассмотрены, хотя и не исключена селективность.
Ситуация для системы заземления ТТ
В данной ситуации отключение в распределительной сети должно произойти за 1 секунду, у конечных потребителей — за 0,2 секунды (исторически сложились такие величины). И если мы примем, что токи короткого замыкания соответствуют рассмотренным ранее, то потребители будут отключены вовремя (время срабатывания выключателя до 0,1 секунды), то для вводного устройства ситуация похуже. Тот же плавкий предохранитель на 40А сработает за целых 3,2 секунды. В общем нужно идти вниз по номиналу:
Как видно, предохранитель даже на 32А не отвечает нормам по времени отключения, но все устройства на 25А можно использовать. В данном случае имеет смысл остановиться на селективном выключателе и в целом получиться следующая картинка:
Автоматы В16А и С10А селективны, В20А — только для случая короткого замыкания, но не в случае длительной работы. Последнее в принципе можно применить, нужно только помнить, что если выбило селективный выключатель, то вполне могла быть проблема на нагрузке за В20А.
Дополнительная информация
Устройство дифференциального тока УДТ
Согласно рекомендации норм отдельные УДТ стоит ставить к каждому устройству защиты от токов короткого замыкания и перегрузок. Обязательными по требованию норм являются розетки, особенно там, где есть контакт электроприборов с водой или где высокая влажность.
Рекомендованы автоматические выключатели, управляемый дифференциальным током, со встроенной защитой от сверхтока (дифференциальные автоматы, RCBO), как универсальное и компактное решение. Хотя цена на них выше, чем на комбинацию выключатель+УДТ. Также существует обоснованное требования применения подобных устройств в ТТ-системах. Причина такого для ТТ-систем в том, что есть одна особенность замыканий по сравнению с TN-системами. Так как в случае ТТ-системы заземление выполняется не от источника питания, а в месторасположении потребителя, то фактически ток замыкания между фазой и корпусом может (и чаще всего бывает) меньше, чем между фазой и нейтралью (в TN-системах эти величины практически идентичны). Фактически это очень большой дифференциальный ток, но иногда недостаточно большой, чтобы сработал выключатель, но вполне достигающих величин, слишком высоких для простого УДТ.
Примечание. УДТ ранее в нормах называлось УЗО, согласно МЭК правильное название устройство дифференциального тока.
Размер щитка
Актуально для тех, у кого в квартире (энергокомпания может требовать основной выключатель возле счетчика, но иногда им все равно, тогда можно все дома держать). Здесь не нужно экономить место. Лучше взять щиток, который будет полупустой, но с ним будет и удобнее работать и всегда будет возможность для расширения.
Программы
Известные мне программы я привел ниже. Единственный естественный недостаток — использование исключительно собственного оборудования для сетей низкого напряжения. Все приведенные ниже программы бесплатны, но иногда требуют бесплатной регистрации для скачивания или первого запуска. Расположены они в порядке личных предпочтений.
- Siemens Simaris Curves — использованная выше программа, уже много лет неизменная, хотя сравнение той же ограничивающей функции можно и улучшить (тут много нужно делать вручную).
- ABB Curves — последнее время сильно улучшилась, количество функций выше, чем у предыдущей программы, но иногда немного заморочена. Также есть возможность использовать плавкие предохранители по МЭК для сравнения, не только собственные, пусть и довольно ограничено.
- Eaton CurveSelect — Excel-файл с кривыми срабатывания защит. Увы, только с кривыми обязательного срабатывания, но не минимальных, потому применимость довольно ограничена в вопросе селективности.
- Онлайн-ресурс от Schneider Electric не работает под Мозиллой, в целом не очень удобная. Здесь вставил ссылку, так как ее очень сложно найти и чаще перебрасывает на неработающую нынче отдельную программу.
Ссылки