Представление чисел суммой двух квадратов и эллиптические кривые
Пусть p — нечётное простое число. Довольно широко известно, что p представимо в виде суммы двух квадратов целых чисел p=a2+b2 тогда и только тогда, когда p при делении на 4 даёт остаток 1: 5=12+22, 13=32+22, 17=12+42, …; 3, 7, 11, … непредставимы. Куда менее известно, что a и b можно записать красивой формулой, имеющей непосредственное отношение к одной эллиптической кривой. Об этом результате 1907 года за авторством немца по фамилии Jacobsthal и о связанных вещах мы сегодня и поговорим. Совсем легко понять, почему 3, 7, 11 и прочие числа, дающие при делении на 4 остаток 3, непредставимы в виде a2+b2: квадрат чётного числа всегда делится на 4, квадрат нечётного числа всегда даёт остаток 1 при делении на 4, сумма двух квадратов при делении на 4 может давать остатки 0, 1 или 2, но никак не 3. Представимость простых чисел вида 4k+1 неочевидна (особенно если заметить, что простота существенна: число 21 хотя и имеет нужный остаток, но суммой двух квадратов не представляется).Читать дальше →