Почему умножение матриц такое
Наверное, каждый задавался вопросом, почему умножение матриц такое. В этой статье мы разберём из каких соображений оно вводится именно так.
Маленькое предисловие
В дальнейшем нам понадобится такая структура, как векторное пространство, а точнее его частный случай — пространство столбцов высотынадКратко напомню, чтопод этим понимается.
Во-первых, — это следующее множество
где таким образом обозначен вектор-столбец высотыто есть
Во-вторых, для любых векторовопределено сложение
и для любого вектораопределено умножение на скаляр
В-третьих, каждый векторединственным образом представим в следующем виде
где — скаляры, а — следующая система векторов
Такая система векторов называется базис, а скаляры, участвующие в разложение вектора, называются координатами этого вектора в данном базисе. Стоит отметить, что в это не единственный базис, но везде далее под «зафиксируем базис» можно понимать именно эту систему векторов.
Умножение матрицы на вектор
Прежде чем переходить к умножению матриц, посмотрим, из каких соображений вводится умножение матрицы на вектор. Для этого рассмотрим линейное отображение
То, что— линейное отображение, означает, что для любых векторови любого скаляравыполняются следующие два условия:
Или их можно объединить в одно
Нас интересует, как линейное отображениедействует на произвольный вектор Для этого зафиксируем в базис а в базис Теперь мы можем разложить векторпо базису
и представитьв следующем виде
Заметим, что а поскольку в зафиксирован базис, то эти векторы также можно разложить по базису
или тоже самое в векторной записи
Подставляем в равенство выше и получаем
Но правая часть равенства есть не что иное, как формула умножения матрицы на вектор-столбец
где столбцы матрицы есть векторы
Получается, можно ввести умножение матрицы на вектор по следующему правилу
И такое определение умножения будет согласовано с тем, как линейное отображениедействует на вектор
Если теперь обозначить то координаты вектора выражаются через координаты вектора следующим образом
Кроме того, мы получили и другой важный результат, вернёмся к выражению для
Из него следует, что линейное отображениеполностью определяется своими значениями на базисных векторах, то есть, если нужно найтито достаточно знать
Далее, мы поместили эти векторы в матрицу и определили умножение так, чтоесть произведение соответствующей матрицынаПолучается, что линейному отображению можно поставить в соответствие матрицу, которая полностью его определяет
Такая матрица называется матрицей линейного отображенияв выбранных базисах пространств и
Если говорить более строго, то существует взаимно однозначное соответствие между линейными отображениями из в и матрицами размера
Теперь мы можем перейти к умножению матрицы на матрицу.
Умножение матрицы на матрицу
Рассмотрим линейные отображенияи
и их композицию
Легко проверяется, что будет линейным отображением
Поэтому, если зафиксировать в и базисы, то каждому линейному отображению можно поставить в соответствие его матрицу
Нас теперь интересует, как между собой они связаны. Для этого рассмотрим следующее равенство
и найдём координаты вектора через координаты вектора
Так както
Но из равенстваследует, что
Подставляем в равенство выше и получаем
С другой стороны, то есть
Сравнивая первое и второе равенство для координатполучаем такое соотношение
которое является формулой умножения матрицы на матрицу.
Таким образом, умножение матрицы на матрицу вводится исходя из того, как действует композиция линейных отображений.
Другими словами, если линейным отображениямипоставить в соответствие их матрицыито композиции этих отображенийставится в соответствие матрица, которая является произведением матриц
Отсюда, кстати, следует, что матрицыиможно умножить только тогда, когда число столбцов матрицыравно числу строк матрицы
Пусть — матрица размера , а — матрица размера Тогда, если в пространствах и зафиксировать базисы, то этим матрицам ставятся в соответствие линейные отображенияи
Но композиция определена только тогда, когда то есть число столбцов матрицыравно числу строк матрицы
Заключение
Таким образом, умножение матриц вводится исходя из того, как действуют линейные отображения. И это намекает на некую связь между ними.
Ниже оставлю различные учебники по алгебре, где можно про всё это прочитать более подробное, и другие различные источники.
Ссылки на литературу и различные источники
Основное:
[1] Введение в алгебру. В 3 частях. Часть 1. Основы алгебры. Кострикин А.И.
Дополнительное:
[1] Введение в алгебру. В 3 частях. Часть 2. Линейная алгебра. Кострикин А.И.
[2] Линейная алгебра и геометрия, Кострикин А.И., Манин Ю.И.
Прочее:
Для создания графики использовался manimCE: https://github.com/manimCommunity/manim
Кому интересно, то вот видео к статье: