Летим и садимся вместе с Falcon 9R
В ночь на понедельник должен был состояться (перенесли на сутки) старт ракеты Falcon 9R, который будет особенным сразу в трех отношениях. Во-первых, должна стартовать новая версия ракеты-носителя (v. 1.2) с увеличенной тягой двигателей и большим количеством топлива на второй ступени. В-вторых, эта миссия является возобновлением полетов после летней аварии и полугодового перерыва. Ну и в-третьих, впервые для SpaceX и во всей истории космонавтики будет предпринята попытка мягкой посадки первой ступени на космодром старта. Для выполнения последней задачи первой ступени надо будет развернуться после отделения, затормозить, погасить горизонтальную скорость, еще раз развернуться для финального торможения, выйти в район посадки и совершить мягкую посадку. К счастью, благодаря замечательному сценарию для Orbiter мы можем посмотреть на этот процесс почти как непосредственные зрители.
Подготовка
Для виртуального полета вместе с ракетой Falcon нам потребуются:
Порядок установки: сначала Orbiter, затем аддон Falcon 9R, затем дополнение OG2.
Сценарий не требует какого-либо пилотирования и хорошо подходит для знакомства с симулятором.
Немного теории
В момент разделения первой и второй ступеней Falcon 9 находится на высоте в районе 90 км и движется со скоростью под два километра в секунду. Для того, чтобы вернуться на старт, первой ступени необходимо погасить горизонтальную составляющую скорости и начать разгоняться в обратную сторону. Профиль полета хорошо иллюстрирует эта схема:
Это же фото в большом размере
Оранжевым отмечены участки работы двигателей, после разделения двигатели первой ступени будут включаться еще три раза. Сначала на трех двигателях ступень погасит горизонтальную скорость и разгонится в сторону космодрома. Затем, также на трех двигателях, ступень притормозит, падая с 90 до 50 км, потому что ракета имеет очень небольшую площадь поперечного сечения и плохо тормозится набегающим потоком. Также на этом участке, наверняка, будет произведено более точное прицеливание в море около точки посадки (на случай отказа двигателя на финальном этапе). Затем, при третьем включении уже только одного двигателя, ракета сойдет с безопасной траектории и произведет посадку на основную или четыре запасных площадки. Между местами старта и посадки всего 9 км.
Что любопытно, несмотря на то, что возврат на стартовую площадку еще ни разу не использовался в истории космонавтики, этот режим отрабатывался для Спейс Шаттла. В случае аварии в начале полета шаттл должен был перейти в режим RTLS Abort (Return To Launch Site — возвращение на место старта). Сразу после сброса твердотопливных ускорителей шаттл должен был развернуться, погасить скорость (в какой-то момент он бы оказался «висящим» с нулевой горизонтальной скоростью, что очень нервировало астронавтов, несмотря на понимание физики процесса), разогнаться в обратную сторону и совершить посадку на аэродром мыса Канаверал. Этот режим ни разу не пришлось использовать, но он был полноценно рассчитан, проверен, запрограммирован, и астронавты были на него натренированы.
Полетели!
Вернемся к Falcon 9. Нам нужен сценарий OG2 Launch.
Запускаем
Все очень красиво, но ночью посадка будет менее зрелищной. Поэтому немного схитрим. У всех будет 01:25 UTC, а у нас уже утро. Можно промотать время вперед с помощью ускорения времени по T и вернуть нормальную скорость времени по R, но лучше поступить изящнее — по Ctrl-F4 открываем редактор сценариев и перематываем время на 15 часов UTC.
Вот так гораздо лучше:
Нажимаем кнопку V, и ракета отправляется в полет. По F2 переключаемся на камеру около ракеты:
Приближаемся к скорости звука. Автор сценария не поленился изобразить эффект Прандтля-Глоерта за головным обтекателем (дымка от конденсирующегося водяного пара в местах с пониженным давлением воздуха около летательного аппарата):
Высота 90 км, скорость 1,8 км/с. Точные данные в циклограмме полета пока неизвестны, но эти примерные значения близки к истине — баллистику и законы физики никто не отменял. Отделение первой ступени:
Нажав F3, переключаемся на первую ступень:
Она активно разворачивается на газовых двигателях ориентации на торможение:
По клавише F1 можно переключиться в режим кокпита, там вовсю работает автоматика.
Обратите внимание, у пустой ступени запас топлива позволяет изменить скорость еще на целых 2,8 км/с. Это топливо могло пойти на разгон всей ракеты, и несложный расчет по формуле Циолковского показывает, что в баках остается еще примерно 30 тонн топлива. Такого количества хватило бы, чтобы придать второй ступени дополнительные примерно 500 м/с. Это много, и одноразовая ступень имела бы более высокую грузоподъемность. Увы, такова плата за многоразовость.
Тем временем, ступень развернулась и начала тормозить. Что любопытно, из-за достаточно заметной вертикальной компоненты скорости ступень, скорее всего, действительно будет тормозить «носом вниз», а не как на картинке выше.
Первый этап торможения закончен. Горючего осталось всего на 1,5 км/с. Высота 180 км, ступень разворачивается двигателями вниз на второй этап торможения.
На высоте 50 км тормозимся с 1,6 км/с до 1 км/с. Аэродинамические рули раскрыты и работают. Запаса характеристической скорости (delta-V) осталось на 1 км/с.
Еще одно включение двигателя, которого не было на циклограмме, скорость погасили до 200 м/с.
Высота 2 км, раскрываются посадочные опоры.
Финальное включение двигателя:
И идеальная посадка. Конечно же, посадка в симуляторе проще реальной. Автомат даже умудрился сэкономить 200 м/с. Кстати, в случае успешной посадки эту первую ступень не будут использовать повторно, а отправят на изучение на стендах SpaceX. Дорога к повторно используемым ступеням не является прямой и легкой, например, серьезные проблемы могут возникнуть с сажей от сгорающего в двигателе и газогенераторе керосина.
Переключаемся на вторую ступень —, а она еще выходит на орбиту:
По окончании выведения сбрасываем вторую ступень кнопкой J:
И красиво раскидываем спутники по космосу из диспенсера. В реальности этот процесс будет происходить с гораздо большими паузами.
Старт в понедельник перенесли на сутки, значит можно спокойно разобраться в Orbiter, как он будет производиться. Ну и пожелаем удачи команде SpaceX!
Материалы по симулятору Orbiter по тегу Orbiter.