Когортный анализ: 3 кейса

Когортный анализ — метод анализа эффективности бизнеса. Суть состоит в том, чтобы анализировать поведение групп людей, объединенных по какому-либо признаку во времени.

Оценка продукта происходит не по итоговой метрике, а по каждой отдельной когорте этой метрики. Когорта — группа людей, которые сделали одно и то же действие в определенный период времени.

image
Пользователи разделяются на когорты, например, в момент первого посещения сайта/регистрации/установки приложения. И в дальнейшем анализ действий юзера проводится внутри каждой когорты.

3 кейса по использованию когортного анализа подготовлены с помощью сервиса t.onthe.io.

Кейс 1: почтовая рассылка


Результат email-рассылки на сайте X — конверсия отправленного письма в переходы составила 12%. Пользователи, которые зарегистрировались 3 недели назад (желтый график), переходят по ссылкам в письме в 2 раза чаще, чем пользователи, которые зарегистрировались 2 месяца назад (зеленый график).

image

Исходя из полученных данных можно сделать вывод, что при планировании подобной рассылки нужно ориентироваться на более новых пользователей. Поскольку те, кто зарегистрировался раньше — либо отличаются большей лояльностью к продукту (составляют ядро), либо перешли из письма случайно.

Кейс 2: рекламный баннер


Компания X запустила рекламную кампанию в Adwords. Если проводить оценку её эффективности только по доходности пользователя в день привлечения, то результаты не будут показательными.

image

Пользователи в первый день жизни наиболее активны и приносят 30% от всей прибыли за день. На следующий день они приносят 10% прибыли, на следующий — еще 10%. Таким образом, накапливается эффект от рекламных переходов, и деньги продолжают поступать от юзеров, привлеченных какое-то время назад, в течение всего периода использования ими продукта.

image

Кейс 3: тренды внутри метрики


Общий график конверсии письма рассылки показывает стабильное количество переходов с небольшим колебанием. Если провести анализ по отдельным когортам — можно увидеть проседание на графике пользователей второй недели. Этого не было видно на общем графике, потому что в тот же день была запущена рекламная кампания из кейса 2, которая увеличила количество новых пользователей с более высокой конверсией писем, получаемых в день регистрации.

Важно заметить, что эффективность новых пользователей не изменилась, но выросла их доля в общей массе. В итоге проседания в метриках рассылки скрылись маркетинговым эффектом.

Количество переходов:
image
Клики в процентном соотношении:

image

Такой анализ позволяет быстро искать источники проседаний, отличать влияние на ключевые метрики изменений в маркетинге или продукте и оперативно исправлять ситуацию.

Конспект


  1. Когортный анализ — относительно новый метод эффективного анализа, подробнее тут.
  2. Наиболее популярный фактор деления на когорты — первое посещение сайта/регистрация/установка приложения.
  3. Когорты позволяют анализировать тренды внутри метрики и отличать продуктовые метрики от метрик роста проекта.

© Habrahabr.ru