Как увидеть 120 Гц и выбрать три телевизора. Часть 2

Осторожно, трафик!

В этой части разберем аппаратное устройство, виды и повадки современных телевизоров.

Основные характеристики — всякие разрешения, HDRы, контрасты и цветовые охваты, что они значат и зачем нужно 120Гц, а также некоторые программные плюшки мы разобрали в предыдущей части.

Дисклеймер: я не претендую на экспертизу, а буду простыми словами рассказывать то, что знаю про эту тему, сознательно допуская весьма большие неточности, иногда даже немного искажая смысл, чтобы было проще. Главное — дать представление о том, что сейчас творится в зоопарке телевизоров. Если я где-то ошибаюсь — буду рад любым дополнениям, уточнениям и критике.

Про прошлое (механика, кинескопы, проекционники и плазму), экзотику (FED/SED/PALC и всякие кинескопные ЖК с эйдофорами) и возможное будущее (MicroLET, быстрые HDR e‑ink, световое поле и фемтосекундные проекторы), а также обычные проекторы, тоже воздержусь рассказывать, ибо и так слишком много всего.

Субпиксели

Начнём с простого. Поскольку современные дисплеи не векторные, а растровые, картинка состоит из пикселей, а каждый пиксель — из субпикселей. Обычно субпиксели бывают красные, зелёные и синие, в экзотических случаях добавляют четвёртый субпиксель, например, жёлтый, или белый.

Простейшая структура пикселяПростейшая структура пикселя

Существуют нечестные экраны, у которых разное количество субпикселей. Например, зелёных столько, сколько надо, а красных и синих в два раза меньше. Примерно так выглядят экраны современных телефонов с AMOLED-экранами:

Нечестный PenTile — классика смартфоновНечестный PenTile — классика смартфонов

Разрешение у них ненастоящее, но пиксели настолько маленькие, что это почти незаметно. В телевизорах же часто встречается другая вариация нечестного разрешения:

Нечестная половина нечестных пикселей чёрно-белые — они расставлены в шахматном порядкеНечестная половина нечестных пикселей чёрно-белые — они расставлены в шахматном порядке

Это встречается в бюджетных телевизорах. Добавляется белый субпиксель, но вставляется в шахматном порядке, и считается за один отдельный целый пиксель. То есть в строках изображения каждый второй пиксель — не цветной, а чёрно-белый. Для просмотра видео это оказывается почти незаметным, ведь у глаза разрешение по цвету гораздо меньше разрешения по яркости. Однако, цветопередача при таком подходе всё равно заметно страдает, и особенно страдает отображение мелких тонких деталей.

Если мы говорим о ТВ в качестве монитора — то у нас этих мелких тонких деталей будет очень много — это кусочки букв. Если собираетесь использовать ТВ как экран в 100% масштабе, то есть без увеличения интерфейса, то такие неполноценные экраны брать строго не рекомендуется. Для шрифтов нужно настоящее разрешение, где всех субпикселей одинаковое количество.

Поэтому, телевизор, который предполагается использовать как монитор, должен иметь полноценные пиксели.

ЖК и светодиоды

Говоря просто, в 2022 основой субпикселей может служить одна из двух технологий: светодиоды или жидкие кристаллы.

Светодиодные дисплеи сразу делают нужное изображение, лепят его из света, как из глины. А жидкокристаллические наоборот, берут сразу кучу света от лампы, и высекают из него картинку, как из камня, удаляя всё лишнее.

Проводя аналогию, можно сказать, что жидкокристаллические дисплеи — это как бензиновые авто — старая отработанная технология, за счёт кучи улучшений и дополнений всё ещё остающаяся конкурентоспособной, а светодиодные — как электромобили. Лаконичнее, технологичнее, но с капризами и детскими проблемами. Технология-то сравнительно новая.

8f882d13a30de346658a2e08c94f50fa.jpeg

Теперь рассмотрим подробнее, как каждый тип экранов, а точнее, матриц, генерирует картинку.

TFT и PCB

Для начала: и в светодиодных, и в жидкокристаллических экранах надо рулить пикселями. Как? Для этого существует технология Thin-Film-Transistor — транзисторы и сопутствующая требуха, которая управляет субпикселями. Присутствует в большинстве дисплеев всех типов — и ЖК, и светодиодных.

Всё вот это вот »a-Si»,»LTPS»,»LTPO» и »IGZO» — это не типы экранов и не виды телевизоров. Это наиболее распространённые технологии изготовления транзисторов, управляющих пикселями экрана. И светодиодными, и жидкокристаллическими. Эти штуки встречаются почти во всех экранах, даже в ныне почивших плазменных.

Важно не только родить гору транзисторов, но и правильно их между собой соединитьВажно не только родить гору транзисторов, но и правильно их между собой соединить

a-Si TFT — самая распространённая технология управления. В большинстве современных экранов за управление пикселями отвечает именно она. Делают эти транзисторы из аморфного кремния. Когда говорят TFT, подразумевают именно это.

LTPS TFT — суровые транзисторы из низкотемпературных поликремниевых транзисторов. Работают они быстрее a-Si TFT. При необходимости, можно изготавливать их сразу вместе со слоем жидких кристаллов или со светодиодами, а также вместе с интегральными схемами, управляющими адресацией пикселей и другими штуками. То есть можно взять жидкие кристаллы или светодиоды, управляющие транзисторы и их логику, и всё это объединить в один слой.

IGZO TFT — это более продвинутая реализация. Замена кремния на оксид индия, галлия и цинка сделала их быстрее, точнее, гораздо энергоэффективнее и миниатюрнее. IGZO позволяет повысить яркость (меньше места для транзистора — больше места для светоизлучателя-субпикселя) и расширить цветовой охват (ибо точность).

LTPO TFT — проапгрейженый вариант LTPS. Расшифровывается как «низкотемпературный поликристаллический оксид». По сути, это комбинация LTPS и IGZO, вобравшая в себе плюсы обеих технологий. Пока что применяется в смартфонах, до телевизоров ещё не докатилась.

PCB — это очень топорный способ управлять светодиодами. Просто берём печатную плату и руками припаиваем к ней светодиоды так же, как припаивают детальки на материнскую плату, разводим дорожки, паяем транзисторы, вот это всё. Применяется такой подход, в основном, в уличных экранах и профессиональных видеостенах с диагоналях в сотни и тысячи дюймов, для телевизоров это редкость. Во многом потому что для телевизорных пикселей важна маленькость, которую очень тяжело получить с подобным подходом.

Разрядность

Пиксель может менять цвет потому, что его субпксели меняют силу свечения. Каждый субпиксель имеет строго определённое число возможных уровней свечения. Наиболее распространённые варианты:

Разрядность

Число уровней свечения

Число возможных цветов

6 бит

64

262 144

8 бит

256

16 777 216

10 бит

1024

1 073 741 824

Также существует специальная функция FRC (Frame Rate Control), которая способна докинуть пару бит несовершенному дисплею: 6 бит превратить в 8 бит, а 8 бит превратить в 10 бит. Работает просто — если субпикселю надо занять промежуточный уровень, он начинает быстро-быстро переключаться между двумя соседними — тот же ШИМ.

Широтно-импульсная модуляция

По точности и качеству эти дополнительные 2 бита всегда немного хуже, чем настоящие. Обозначение у таких разрядностей выглядит так:

  • 6+2frc — это когда 6-битная матрица делает вид, что она 8-битная

  • 8+2frc — это когда 8-битная матрица делает вид, что она 10-битная

c7fc4ffd63b8ac0671231153560ea23f.jpg

Чем больше промежуточных уровней, тем плавнее дисплей может рисовать градиенты. Тут важно понимать, что чем выше яркость и контрастность дисплея, тем острее он нуждается в большем числе промежуточных уровней, потому что больше будет «перескок» между соседними уровнями — при повышении яркости возрастает разница между яркостями соседних уровней. Особенно остро в большом числе уровней нуждаются HDR-телевизоры, потому что у них высокая пиковая яркость.

Хороший дисплей в 2022 году — 10-битный, то есть умеющий показывать более одного миллиарда разных цветов. Для того, чтобы 10 бит были честными, мало отсутствия FRC — все части дисплея должны поддерживать эту высокую разрядность — и управляющие транзисторы, и исполнительное устройство, будь то ЖК или светодиоды.

До реальной потребности в 12-битных матрицах нам ещё довольно далеко, впрочем, маркетологи не дремлют.

Теперь разберём разные типы дисплеев — светодиодные и жидкокристаллические.

Светодиодные дисплеи

В светодиодных телевизорах пиксели светятся сами, и всё устроено довольно просто: меняй себе яркость каждого субпикселя-светодиода и получай картинку. В каждом пикселе получаем столько света и цвета, сколько нужно.

a68308e53b1e43d3062db3ad86cd62f2.jpeg

Способность полностью выключать пиксели — это возможность показывать нормальный чёрный цвет чёрного цвета, который даже в темноте не видно (а не серо-синее марево, как у ЖК), без ореолов, засветки и прочих проблем. Светодиодные дисплеи имеют превосходные углы обзора, контрастность, цветопередачу и уровень чёрного.

Делать светодиодные ТВ по-нормальному научились сравнительно недавно, а у новых технологий вечно бывают детские проблемы. Главная — большинство дисплейных светодиодов любят быстро умирать, и приходится сильно изворачиваться, чтобы замедлить этот процесс. Это то самое выгорание, за которое любят критиковать светодиодные ТВ.

Самые передовые светодиодные дисплеи, при всех их плюсах и качестве изображения — всё ещё далеко не массовый продукт, производятся очень маленькими партиями и имеют серьёзные проблемы с надёжностью.

Собственно, каждый субпиксель такого телевизора — это отдельный светодиод.

Диоды и светодиоды

Начнём не со светодиода, а просто с диода (diode). Отбросив сложности про нелинейности, динамические характеристики и прочие подобные вещи, и говоря просто, диод — это электрическая деталь, которая пропускает ток только в одну сторону. До появления диодов, чтобы так делать, электронами стреляли в вакуумных колбах и с помощью электрических полей управляли их движением — это был один из видов вакуумных ламп. А диод — это более совершенная технология, простой полупроводник, то есть кристалл, без стекла, вакуума и прочих штук. Диоды применяют много где, с помощью них можно делать много разных полезных вещей.

Меньше атома диод делать не умеют, но это пока чтоМеньше атома диод делать не умеют, но это пока что

99 лет назад Олег Владимирович Лосев случайно обнаружил, что у некоторых диодов есть побочный эффект — они светятся, когда по ним идет ток. И всё, заверьте.

Формально, слово LED (Light-Emitting Diode) означает «светоизлучающий диод» или коротко — «светодиод».

Но в мире телевизоров и экранов это слово пихают абсолютно везде, называют им всё подряд. И в светодиодные экраны, и в ЖК, и в телевизоры, и в мониторы, запутывая людей. Например, сейчас самый простой вариант ЖК телевизора называют LED™™, более навороченный ЖК называется QLED, а светодиодный телевизор из органических светодиодов называется OLED.

Первый в мире серийный OLED Sony XEL-1 (2007)Первый в мире серийный OLED Sony XEL-1 (2007)

История путаницы такова. Вначале были только ЖК телевизоры с подсветкой на ртутных лампах. Называли их LCD — ну ок, других всё равно не было. Вдруг в 2007 появился светодиодный OLED, картинка по тем временам сумасшедшая, все радуются. Слово OLED стало синонимом ультракачества изображения. Тем временем, производители ЖК догадались заменить ртутные лампы подсветки на светодиоды. Получилось тоньше, чуть лучше, экономнее. Как таки лучше пrодать такой ЖК? Давайте назовём его LED™™. А чего такого, у них же светодиоды есть. Люди же как подумают: OLED крутой, слова OLED и LED™™ похожи, значит и дисплеи похожи, а LED™™ ещё и гораздо дешевле. С тех пор словом LED™™ называют ЖК телевизоры со светодиодной, причем самой примитивной, на сегодняшний день, подсветкой, в то время как OLED как раз по-настоящему состоят из светодиодов. В итоге LED™™ — это дешевый ЖК, а OLED — это светодиодный экран. Но это не всё! Аббревиатуру LED™™ можно встретить где угодно: NeoQLED, QLED, MiniLED — это всё ЖК, только со светодиодной подсветкой и дополнительными улучшалками, а OLED, CrystalLED и MicroLED — это светодиодные тв. Попробуй разберись >:(

Даже сюда добралисьДаже сюда добрались

Таким образом, важно понимать, что названия телевизоров контринтуитивны и сильно запутывают. За двумя похожими названиями могут стоять технологии из разных веков. Например, QLED и OLED — это две фундаментально разные технологии. Между MicroLED и MiniLED вообще лежит технологическая пропасть. Похожесть названий никак не коррелирует с похожестью технологий.

Возвращаемся к светодиодам. Светодиод может сразу излучать цветной свет, например, красный или зелёный — здесь не требуется какого-либо светофильтра, цветного стекла или каких-нибудь квантовых точек. Просто сразу излучается нужная длина волны. Также бывают белые светодиоды, использующие специальное покрытие чтобы получить сразу все нужные длины волн.

В контексте применения светодиодов в телевизорах, их условно можно поделить на три типа:

  1. Неорганический обычный

  2. Органический обычный

  3. Неорганический микро

Неорганические обычные светодиоды — LED

Вне мира дисплеев, где LED™™ натянули на ЖК-экраны, это слово как раз обозначает обычный неорганический светодиод. Классический полупроводниковый источник света, ему уже почти 100 лет. Можно купить в радиомагазине и спаять себе красивый LED-кубик.

Интересно было бы собрать робота, который в автоматическом режиме спаял бы кубик 200х200х200 диодовИнтересно было бы собрать робота, который в автоматическом режиме спаял бы кубик 200×200х200 диодов

У этих светодиодов куча реализаций, размеров и корпусов. Из них состоят энергосберегающие лампы, индикаторы на зарядках, фары у авто, гирлянды и светодиодные ленты, и из них состоит подсветка у большинства ЖК-телевизоров. Если хорошо сделать, LED работает вечно.

8c88588f0693f7a3ffd1f52f5809555a.png

Светодиоды не любят чрезмерный нагрев — они от него тускнеют и умирают. Греются они всегда, когда светят. Именно поэтому часто умирают дешёвые светодиодные лампы — там охлаждению почти не уделяют внимания. Чтобы противодействовать умиранию, яркие светодиоды часто снабжают каким-нибудь радиатором.

В мире экранных технологий обычные светодиоды больше прижились в качестве подсветки жидкокристаллических дисплеев. Делать из таких обычных светодиодов сами пиксели довольно сложно, такое, разве что, встречается в промышленных видеостенах и уличных экранах с диагоналями в сотни и тысячи дюймов.

Экраны сделаны из органических светодиодов, а светодиодные ленты — из неорганическихЭкраны сделаны из органических светодиодов, а светодиодные ленты — из неорганических

В моём случае, именно из таких светодиодов сделаны ленты окружающей подсветки, создающей ореолы вокруг экранов — в каждом корпусе стоит красный, зелёный и синий светодиод, а также чип, управляющий их яркостью.

Внутри каждого корпуса три светодиода и контроллерВнутри каждого корпуса три светодиода и контроллер

Органические светодиоды — OLED

Органический светодиод aka OLED наоборот, обитает, в основном, только в дисплеях (хотя из них ещё делают интересные светильники), и самостоятельно в природе почти не встречается. Главный недостаток — эффект памяти. При постоянном нагреве органический светодиод медленно и верно умирает, и делает это гораздо быстрее обычных светодиодов.

4bd0ac19753dbaddf34d30809635b80b.png

А греется он постоянно. Поэтому его надо не сильно напрягать, чтобы не грелся, и охлаждать получше. Совсем хорошо — радиатор поставить. Единственное преимущество Organic LED перед неорганическим собратом — их умеют изготавливать сразу миллионами и в виде дисплеев. Всё. Больше преимуществ у них нет. Самые распространенные и доступные светодиодные телевизоры сделаны именно из органических светодиодов — они так и называются: OLED-телевизоры.

Любимая пугалка противников OLED: на экране через пару лет появятся такие вот отпечатки. Всем бояться.Любимая пугалка противников OLED: на экране через пару лет появятся такие вот отпечатки. Всем бояться.

Если органический светодиод долго горит, он постепенно начинает тускнеть, как бы устаёт — поэтому возникает эффект «отпечатывания» картинки. Если целенаправленно им поморгать — тусклость пропадёт, и сбросится эффект отпечатка. Поэтому OLED телевизоры любят периодически проситься отключиться на 5 минут, чтобы «размять» свои пиксели и избавиться от отпечатков.

Если пиксели не «разминать», то они деревенеют и тусклость остаётся навсегда — это уже называется выгорание, с теми самыми неубираемыми отпечатками, которыми любят пугать противники OLED телевизоров.

Ещё одна проблема OLED — большинство моделей отстают по яркости от топовых ЖК-телевизоров, обвешанных дополнительными улучшалками (1500 кд/м2 против 2000 — 4000 кд/м2). А мы помним, что яркость это не только корректная работа функции HDR, но и для противодействия засветке в ярко освещённых помещениях.

Другими словами, ограничение яркости — это превентивная мера против перегрева и преждевременной деградации. Если ярко светить, пиксели слишком быстро вымрут.

Теоретически можно попробовать разогнать яркость OLED, но проживёт он в таком режиме не долго. Можно продлить ему жизнь с помощью контура жидкостного охлаждения сзади + соорудить прозрачную ёмкость с водой толщиной пару сантиметров прямо перед телевизором, чтобы вода контактировала напрямую с экраном и снимала с него тепло. В любом случае, жидкостное охлаждение напрямую к пикселям можно подвести только на этапе производства на конвейере. А значит — экран всё равно быстро умрёт.

Красные, зелёные и синие субпиксели тут почти не участвуют - всё рисуют специальные, белыеКрасные, зелёные и синие субпиксели тут почти не участвуют — всё рисуют специальные, белые

Всего общепринятых вариантов цветных OLED дисплеев три: из цветных светодиодов, из белых светодиодов со светофильтрами и из синих светодиодов с фильтрами на квантовых точках.

Строение пикселя OLED телевизора. Первый вариант слишком сложный и не прижился, второй — наиболее распространённый сегодня, третий — самый совершенный, только набирает оборотыСтроение пикселя OLED телевизора. Первый вариант слишком сложный и не прижился, второй — наиболее распространённый сегодня, третий — самый совершенный, только набирает обороты

По логике, цветные светодиоды — самый лучший способ. Сразу получаем нужный цвет. Однако, у него есть две большие проблемы. Первая — светодиоды, светящие разным цветом, имеют разный химический состав. Создавать матрицу из миллионов лампочек, устроенных по-разному — сложно, долго и дорого. Вторая — разные светодиоды выгорают с разной скоростью. Первые OLED экраны так и были сделаны, и постепенно желтели, потому что синие субпиксели выгорали быстрее всех.

Поэтому пришли ко второму варианту — все светодиоды одинаковые, белого цвета — производить такое легко. Свет от этих белых лампочек раскрашивается светофильтрами разного цвета. Для увеличения яркости и энергоэффективности в каждый пиксель таких дисплеев добавили четвёртый белый субпиксель, без светофильтра. Не путать с нечестными бюджетными ТВ — в отличие от них, здесь все пиксели полноценные, просто состоят из четырёх субпикселей — красный, зелёный, синий и белый. Это наиболее распространённый вариант OLED-телевизоров сегодня.

Белый субпиксель делают по той же причине, по которой у цветных принтеров есть чёрная краска: если надо получить чёрно-белое, то смешивать все три цвета слишком затратно — лучше делать это отдельно. У принтера эта затратность выражается краской, а у телевизора — энергией. Светофильтры пропускают только какой-то один цвет из состава белого (белый — смесь всех цветов), а остальное превращают в тепло. Зачем брать три белых светодиода, от одного брать только красный, у другого только зелёный, у третьего синий, и потом обратно это смешивать, чтобы получить белый? Мы же 70% света в тепло превращаем — мало того, что это тусклота, мы этим теплом добиваем и без того хлипкие органические светодиоды. Давайте сразу белым светить.

Третий вид OLED дисплеев появился сравнительно недавно. Все светодиоды здесь не белые, а синие. Вместо светофильтров — особое вещество, которое называется квантовые точки, превращающие синий свет в красный или в зелёный. Пиксели вновь состоят из трёх субпикселей, в четвёртом необходимости нет. Поскольку квантовые точки намного лучше, точнее и энергоэффективнее светофильтров, такие телевизоры гораздо ярче и меньше подвержены выгоранию, и в качестве бонуса — улучшенная цветопередача. Эти телевизоры называются QD-OLED.

Неорганические микросветодиоды — MicroLED

Неорганический микросветодиод aka MicroLED (не путать с MiniLED) может иметь размер всего в 5 микрометров. Он очень энергоэффективен, он не выгорает. И из него умеют делать дисплеи. Вы можете делать экраны с сумасшедшей плотностью пикселей в десятки тысяч точек на дюйм и пихать их в VR шлемы и линзы для глаз, можете делать голографические дисплеи и кучи других замечательных штук.

Обратите внимание, как оно пышет ярким светом на людей рядом. 5000 кд/м² - не шутки. Закат на таком экране выглядит бесподобноОбратите внимание, как оно пышет ярким светом на людей рядом. 5000 кд/м² — не шутки. Закат на таком экране выглядит бесподобно

Вы также можете делать из них отличную равномерную подсветку для ЖК дисплеев. А уж если сделать из них светодиодный экран — вы получите самый крутой, доступный на сегодняшний день, дисплей: MicroLED. Данные экраны, с их цветовым охватом и яркостью, любят использовать вместо зелёного фона на съёмках современных сериалов и кино.

Цвета и яркость MicroLED сопоставима с реальными, и на актёров Цвета и яркость MicroLED сопоставима с реальными, и на актёров «Мандалорца» сам собой ложится реалистичный свет. Никаких осветителей и ламп — окружение само светит так, как надо

Самые крутые в мире телевизоры с яркостью 5000 кд/м2 имеют гигантские модульные экраны в сотни дюймов, целиком сделанные из таких светодиодов. Это — вершина дисплейной технологии на 2022 год.

Изначально для управления светодиодами в MicroLED-телевизорах использовались печатные платы (PCB), то есть светодиоды буквально тупо припаивались к печатной плате, как обычные детали. Сейчас происходит переход на технологию TFT LTPS.

Вместе с тем, MicroLED является достаточно сырой технологией. На 2022 год выявлено большое число случаев с битыми пикселями и низкой надёжностью матриц. Технология молодая, и ей ещё предстоит избавиться от детских проблем. Один из очевидных путей удешевления и увеличения надёжности — сделать все диоды синими и намазывать квантовые точки — подозреваю, что сделают именно так.

Жидкокристаллические дисплеи

Структурно ЖК дисплеи устроены гораздо сложнее светодиодных. Такие ТВ сначала просто генерируют свет, а дальше отсекают от него всё лишнее, чтобы получилась картинка. Слоёв для этого используется много. Для начала сосредоточимся на трёх главных и рассмотрим, как эти слои формируют картинку.

Упрощённый принцип работы пикселя в ЖК-дисплееУпрощённый принцип работы пикселя в ЖК-дисплее

Сначала светим рассеянным равномерным светом, какой-нибудь единой целой лампой под всем дисплеем, или, в более дорогих вариантах — сотней или тысячей маленьких лампочек для каждой отдельной зоны дисплея.

Теперь, чтобы свет стал картинкой, нам надо отсечь ненужную часть света в каждом пикселе. Если забыть про физику и поляризацию, и объяснить неправильно, но просто, то жидкие кристаллы — это такая чёрная жидкость, которая станет прозрачной, если на неё подать электричество. В дисплеях её помещают в маленькие капсулы с прозрачной оболочкой, делают из таких капсул субпиксели, и используют как электронную версию жалюзи, дозирующих свет.

Затем красим свет. Для этого можно просто использовать светофильтры — маленькие цветные стекла, а можно более экзотические варианты, например, квантовые точки.

В современных дисплеях последние два этапа (ЖК и раскраска) любят менять местами.

9080678ca33088033a282e8573086b3a.png

В реальности слоёв в ЖК гораздо больше. И эта куча слоёв генерирует кучу проблем: слишком толстые пиксели убивают углы обзора, делаем кучу света, а потом его заслоняем — кучу энергии впустую, кристаллы инертные и оставляют шлейфы, и, даже в закрытом состоянии, пропускают немного света — поэтому чёрный цвет не будет идеальным. Пытаемся локально выключать подсветку в тех местах, где она не нужна — становится лучше, но всё равно остаются противные ореолы. И ещё много всего.

При всей сложности, ЖК экраны появились очень давно, поэтому уже отработанная и отлаженная технология стоит дешево и широко распространена. Та же история, что с механическими жесткими дисками (HDD), сложность которых уже сопоставима с космической техникой, но из-за обработанности технологии они стоят меньше, чем более простые SSD.

Рассмотрим основные слои ЖК-дисплеев: подсветка, жидкие кристаллы и окрашивающий слой.

Подсветка

Прежде чем высечь скульптуру из камня, нам нужен сам камень. Так и с ЖК дисплеями: прежде, чем высечь картинку из света, нам нужен сам свет.

Подсветка CCFL: ртутная лампа

Самый первый и древний тип подсветки. Устроен примерно так же, как вот такие олдскульные лампы, только в дисплеях эти лампы гораздо тоньше и лучше. Лампы эти называют люминесцентными, если точнее — флуоресцентными.

Примерно такое ставили в жидкокристаллические дисплеиПримерно такое ставили в жидкокристаллические дисплеи

Работают такие лампы просто: внутри стеклянной трубы пары ртути. Пускаем по парам электричество, из-за чего часть пробегающих электронов превращается в фотоны ультрафиолетового света. А на поверхность лампы намазываем особое вещество — люминофор. Проходя через него, у ультрафиолетового излучения понижается частота, и фотоны ультрафиолета становятся фотонами видимого света.

Почему эти лампы делают зззззз?

«Ззззз» делают дроссели и трансформаторы питания, а не сами лампы. Ртуть внутри ламп — это металл, и, как положено металлу, хорошо проводит электричество, но этот металл там в виде пара. Заставить электроны течь по пару сложно, потому что атомы далеко друг от друга — электронам далеко прыгать. Приходится подпинывать их высоким напряжением в тысячи вольт. Высокое напряжение генерируем с помощью трансформатора: электричество превращаем в магнитное поле, а его — снова в электричество, но уже другое. Если те железные детали трансформатора, где это магнитное поле постоянно появляется-пропадает, плохо держатся, они начинают притягиваться-отталкиваться — и дребезжать. Вот это оно и есть.

В дисплеях эти лампы совершеннее. Вдобавок, перед лампами обязательно стоит светорассеиватель — что-то вроде матового стекла, равномерно размазывающего свет по всему дисплею. Размазывается свет очень туго, поэтому у дисплея яркость неравномерная и пятнами раскидана по дисплею.

1b573d23fe97b99f1985b8070423a7cf.png

Не смотря на древность, у этой подсветки есть большой плюс — неплохой спектр. Именно он создает ощущение тёпломягкой природной естественности цветов на некоторых старых ЖК дисплеях, даже дешёвых.

А что если сами пиксели сделать из таких ламп? Т. е. как светодиодный дисплей, пиксели сами светятся, только не светодиоды, а вот такие лампы? Мы только что придумали PDP‑телевизор — отдельный вид телевизоров, который уже вымер, к сожалению. Долгое время именно этот тип доминировал на рынке премиальных ТВ, пока не уступил место OLED. Шикарные цвета, шикарный спектр, отличный контраст, но большие пиксели и сильный нагрев. Вероятно, вы о них слышали — это те самые плазменные ТВ.

Все остальные виды подсветки уже светодиодные.

Подсветка EdgeLED: светодиоды по краям

Самый простой тип светодиодной подсветки. Такой же светорассеиватель, но вместо ртутных ламп — обычные неорганические светодиоды по периметру. Поэтому он и называется «edge». Также, как и предыдущий тип, имеет проблемы с равномерностью.

По сравнению с ртутными лампами, такие дисплеи кушают меньше энергии (светодиоды же), меньше весят и гораздо тоньше. Бывает, что светят только снизу, бывает — только сверху и снизу, бывает — со всех сторон. В теории это не должно играть роли — светорассеиватель должен равномерно распределить свет по всему экрану. На практике он далеко не всегда хорошо с этим справляется.

Подсветка DirectLED и FALD: светодиоды под экраном

568def9873321d093f35f429f14db875.png

Продвинутая подсветка, родом из профессиональных дисплеев. Довольно очевидная идея состоит в том, что мы светим уже не с боков, а сзади. Размещаем массив обычных светодиодов под экраном. Этих диодов может быть несколько десятков. Здесь нам гораздо легче размазать свет по всему экрану. К слову, первый ЖК телевизор со светодиодной подсветкой был именно с подсветкой DirectLED, потом решили удешевить и появился EdgeLED, а потом, для улучшения качества в небюджетных моделях, вернулись к DirectLED.

1f12ff4a33d91811b9d5f546e777c197.png

Более продвинутый вариант DirectLED любят называть FALD (Full-Array Local Dimming) — это название в 2018 году решила использовать компания LG. К тому моменту светодиоды научились ставить уже не десятками, а сотнями, поэтому, зачастую, FALD лучше, чем DirectLED.

Подсветка MiniLED: очень много светодиодов под экраном

Эволюционное развитие DirectLED и FALD — теперь у нас не сотни, а тысячи или даже десятки тысяч маленьких светодиодов размером около 200 мкм — почти как человеческий волос. Поэтому дела с равномерностью и энергоэффективностью обстоят ещё лучше. На горизонте уже маячат варианты с сотнями тысяч и даже миллионами зон подсветки.

RGB-LED: много цветных светодиодов под экраном

Технически, RGB-LED — это как DirectLED, FALD или MiniLED, но разница в том, что светодиоды подсветки здесь не белые или синие, а цветные, и не просто помогают экрану светиться в нужных местах, но и задают общую цветовую палитру в локальной области.

Изначально эта технология появилась в профессиональных мониторах для&nbs

© Habrahabr.ru