Хватит всё подряд называть ИИ
Большинство менеджеров и маркетологов называют искусственным интеллектом всё подряд: пылесосы, игрушечных роботов-трансформеров и даже подбор мобильных тарифов. Это в тренде и хорошо продаётся, только одна проблема — даже учёные не рискуют говорить, что создали ИИ.
Решили разобраться в определениях: можем ли мы вообще говорить об искусственном интеллекте, чем он отличается от машинного обучения и справедливо ли презрительно поднимать брови, когда мы видим очередную рекламу с ИИ.
ИИ ДЛЯ ВИКИПЕДИИ
Определение искусственного интеллекта из Википедии абстрактно и универсально, как гороскоп.
Искусственный интеллект — это наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ.
Такая формулировка ни о чём не говорит, потому что неясно, что считать «интеллектуальным» в мире машин. В Википедии про интеллект пишут как про качество психики, а этой штукой обладают только живые существа.
Интеллект (от лат. intellectus «восприятие»;»разумение», «понимание»; «понятие»,»рассудок») или ум — качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций, и использованию своих знаний для управления окружающей человека средой.
Поэтому в поисках адекватного определения мы пошли на сайты лабораторий и институтов, изучающих искусственный интеллект.
ИИ ДЛЯ УЧЕНЫХ
Глобально тема ИИ непростая, потому что даже среди специалистов до сих пор нет общепризнанного определения — каждый понимает искусственный интеллект по-своему.
Поэтому мы решили посмотреть, что изучают лаборатории и кафедры, которые занимаются исследованием ИИ: Московский физико-технический институт, Центр речевых технологий в ИТМО, ИСА РАН, лаборатории в компаниях и корпорациях (например, Сбербанк, Samsung, ВКонтакте) и другие заведения.
В область их изучения, например, попадают:
1) Предиктивная аналитика — интеллектуальный анализ данных, на основе которого алгоритмы могут сделать прогноз. Например, когда Сбербанк принимает решение о выдаче кредита, их технология Big Five анализирует соцсети клиента, составляет психологический портрет и оценивает его благонадёжность.
2) Рекомендательные системы — алгоритмы, которые подбирают объекты под пользователя: контент, товары и предложения. Мы все с этим знакомы: если в минуту нетрезвой грусти поставить на YouTube «Выйду ночью в поле с конем», хостинг запомнит вас как фаната «Любэ» и предложит послушать про батяню комбата.
3) Компьютерное зрение и распознавание изображений — область ИИ, которая обучает компьютеры интерпретировать и «понимать» визуальный мир. Используется, например, в беспилотных автомобилях или в сервисах вроде FindClone, который находит людей во ВКонтакте по фотографии.
4) Синтез, распознавание и генерация речи — то, что умеют делать Siri, Алиса и другие виртуальные ассистенты (подробнее о работе подобных алгоритмов и нашей Lia мы писали в предыдущей статье).
Мы видим, что термин искусственный интеллект используют в задачах, где система анализирует данные и на основе этого принимает «умные» решения.
Но ни один исследователь не говорит, что он создал ИИ — институты лишь изучают алгоритмы, которые выполняют задачи из области ИИ.
ИИ и машинное обучение
Нередко ИИ путают с машинным обучением, но это неверно. ML часто применяется для этих задач, потому что с его помощью удобно провести анализ информации и принять решение. Например, ml-алгоритм предскажет, что с 98% вероятностью человек на картинке — это пользователь смартфона. Значит, телефон можно разблокировать.
Но учёные не приравнивают ML к ИИ. Для них искусственный интеллект — область исследований о том, как заставить машину выполнять нетривиальные задачи. А ML — класс алгоритмов, которые служат для их решения (как винтики в часах).
ИИ ДЛЯ СНОБОВ
Те, кто любит докапываться, говорят: «Этот пылесос не умный, потому что он не может приготовить лазанью или поспорить о Канте. ИИ должен быть как оракул, который готов ответить на любой вопрос и решить любую задачу».
Такой идеалистический образ машины как суперчеловека пришёл к нам из кинематографа и искусства. Романтика ИИ — это смышленая робо-девушка из фильма «Она» или «Терминатор», готовый разрулить все проблемы одной левой. Это тебе не чат-бот, который ломается при первом же запросе мимо сценария.
Для того, что снобы имеют в виду под искусственным интеллектом, есть специальное определение: сильный искусственный интеллект или general artificial intelligence. Утопический алгоритм, который справится с любой задачей без подсказок: тот самый герой, способный на всё. Как человек, только непогрешимый.
Теория сильного искусственного интеллекта предполагает, что компьютеры могут приобрести способность мыслить и осознавать себя как отдельную личность (в частности, понимать собственные мысли), хотя и не обязательно, что их мыслительный процесс будет подобен человеческому.
Обычный или как его называют «слабый» искусственный интеллект отличается от «сильного» тем, что пишется под конкретные задачи: например, у беспилотника один алгоритм анализирует дорогу, а другой на основе этих данных понимает, куда ехать. Да, это ML — и да, из области ИИ. Но в отличие от general artificial intelligence не сможет действовать в условиях неопределенности: воспитывать детей или спасать мир.
Возможно, простой ИИ называют слабым потому, что он не оправдывает человеческих надежд. Пока нет сильного интеллекта, нам остаются только простенькие роботы — они хорошо притворяются, но все, кто общался с чат-ботами или даже с Алисой знают, как легко их раскусить.
Хотя маркетологи, конечно, о слабостях не говорят.
ИИ ДЛЯ МАРКЕТОЛОГОВ
Менеджеры и маркетологи называют ИИ все smart-девайсы и любую умную фигню, которая умеет что-то делать сама: по квартире ездить, свет включать, товар подбирать.
Недавний пример из рекламного мира: Искусственный интеллект МТС сформирует для вас персональный тариф.
ИИ здесь можно заменить словами «алгоритм» или «ассистент» — для пользователя суть не поменяется, это просто красивое слово.
На баннере, конечно, не пишут, что у МТС под капотом — может, у них есть свой штатный Терминатор. Но скептичные программисты сразу понимают, что скорее всего это несложная реализация, основанная на известных алгоритмах.
Мы ожидаем, что искусственный интеллект будет нас удивлять, а называть им топорные методы это как минимум наивно. Но маркетологи никогда не были скромными (или даже реалистичными).
Как правильно
Искусственный интеллект только начали изучать, поэтому всерьез говорить об ИИ в рекламе всё равно, что называть школьника «начинающим магистром».
Тогда как правильно? Мы думаем, что на данный момент в разговорах об ИИ грамотнее всего использовать определение «алгоритмы машинного обучения» или говорить, что технология построена на алгоритмах ИИ — за это эксперт вам поставит плюс.
Потенциальные пользователи тоже скажут спасибо: несправедливо, что менеджеры ставят большую идею об искусственном интеллекте в один ряд с «умным» пылесосом.
Ведь до настоящего (сильного) искусственного интеллекта нам ещё далеко.