Хабрамегарейтинг: лучшие статьи и статистика Хабра за 12 лет. Часть 1/2

Привет Хабр.

После публикации рейтинга статей за 2017 и 2018 год, следующая идея была очевидна — собрать обобщенный рейтинг за все годы. Но просто собрать ссылки было бы банально (хотя и тоже полезно), поэтому было решено расширить обработку данных и собрать еще немного полезной информации.

tqxzftd1f2qeaxmdgzfal2hhhcg.png

Рейтинги, статистика и немного исходного кода на Python под катом.

Обработка данных


Те, кого сразу интересуют результаты, эту главу могут пропустить. А мы пока выясним, как это работает.

В качестве исходных данных имеется csv-файл примерно такого вида:

datetime,link,title,votes,up,down,bookmarks,views,comments
2006-07-13T14:23Z,https://habr.com/ru/post/1/,"Wiki-FAQ для Хабрахабра",votes:1,votesplus:1,votesmin:0,bookmarks:8,views:28300,comments:56
2006-07-13T20:45Z,https://habr.com/ru/post/2/,"Мы знаем много недоделок на сайте… но!",votes:1,votesplus:1,votesmin:0,bookmarks:1,views:14600,comments:37
...
2019-01-25T03:47Z,https://habr.com/ru/post/435118/,"Save File Me — бесплатный сервис бэкапов с шифрованием на стороне клиента",votes:5,votesplus:5,votesmin:0,bookmarks:26,views:1800,comments:6
2019-01-08T03:09Z,https://habr.com/ru/post/435120/,"Lambda-функции в SQL… дайте подумать",votes:9,votesplus:13,votesmin:4,bookmarks:63,views:5700,comments:30


Индекс всех статей в таком виде занимает 42Мб, а для его сбора понадобилось примерно 10 дней работы скрипта на Raspberry Pi (закачка шла в один поток с паузами, чтобы не перегружать сервер). Теперь посмотрим, какие данные из всего этого можно извлечь.

Аудитория сайта


Начнем с относительно простого — оценим аудиторию сайта за все годы. Для примерной оценки можно использовать количество комментариев к статьям. Загрузим данные и выведем график числа комментариев.

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv(log_path, sep=',', encoding='utf-8', error_bad_lines=True, quotechar='"', comment='#')

def to_int(s):
    # "bookmarks:22" => 22
    num = ''.join(i for i in s if i.isdigit())
    return int(num)

dates = pd.to_datetime(df['datetime'], format='%Y-%m-%dT%H:%MZ')
dates += datetime.timedelta(hours=3)
comments = df["comments"].map(to_int, na_action=None)

plt.rcParams["figure.figsize"] = (9, 6)
fig, ax = plt.subplots()
plt.plot(dates, comments, 'go', markersize=1, label='Comments')
ax.xaxis.set_major_locator(mdates.YearLocator())
plt.ylim(bottom=0, top=1000)
plt.legend(loc='best')
fig.autofmt_xdate()
plt.tight_layout()
plt.show()


Данные выглядят примерно так:
-lh4pxnmfsld-gjrhpccgd4_p24.png

Результат интересен — оказывается, с 2009 года активная аудитория сайта (те, кто оставляют к статьям комментарии) практически не растет. Хотя может все ИТ-шники просто уже здесь?

Раз уж речь зашла про аудиторию, интересно вспомнить последнее нововведение Хабра — добавление англоязычной версии сайта. Выведем статьи, имеющие »/en/» внутри ссылки.

df = df[df['link'].str.contains("/en/")]


Результат тоже интересный (масштаб по вертикали специально оставлен тем же):
e-pusz5vy2111zj606lzzagax1a.png

Всплеск количества публикаций начался с 15 января 2019, когда был опубликован анонс Hello world! Or Habr in English, однако за несколько месяцев до этого 3 статьи уже были опубликованы: 1, 2 и 3. Вероятно, это было бета-тестирование?

Идентификаторы


Следующий интересный момент, которого мы не касались в предыдущих частях — это сопоставление идентификаторов статей и дат публикации. Каждая статья имеет ссылку вида habr.com/ru/post/N, нумерация статей сквозная, первая статья имеет идентификатор 1, а та которую вы читаете, 441740. Кажется, все просто. Но не совсем. Проверим соответствие дат и идентификаторов.

Загрузим файл в Pandas Dataframe, выделим даты и id, и построим их график:

df = pd.read_csv(log_path, header=None, names=['datetime', 'votes', 'bookmarks', 'views', 'comments'])
dates = pd.to_datetime(df['datetime'], format='%Y-%m-%dT%H:%M:%S.%f')
dates += datetime.timedelta(hours=3)
df['datetime'] = dates

def link2id(link):
    # https://habr.com/ru/post/345936/ => 345936
    if link[-1] == '/': link = link[0:-1]
    return int(link.split('/')[-1])

df['id'] = df["link"].map(link2id, na_action=None)

plt.rcParams["figure.figsize"] = (9, 6)
fig, ax = plt.subplots()
plt.plot(df_ids['id'], df_ids['datetime'], 'bo', markersize=1, label='Article ID')
ax.yaxis.set_major_formatter(mdates.DateFormatter("%d-%m-%Y"))
ax.yaxis.set_major_locator(mdates.MonthLocator())
plt.legend(loc='best')
fig.autofmt_xdate()
plt.tight_layout()
plt.show()


Результат удивляет — идентификаторы берутся не всегда подряд, как предполагалось изначально, имеются заметные «выбросы».
mcm7g5pio9ljy33ftqsr9namhpw.png

Отчасти именно из-за них у аудитории были вопросы к рейтингам за 2017 и 2018 годы — такие статьи с «неправильным» ID не учитывались парсером. Почему так, сказать сложно, да и не так важно.

Что может быть интересного в идентификаторах? Есть гипотеза, которую я не могу доказать формально, но которая кажется очевидной. Идентификатор присваивается в момент создания черновика статьи, а дата публикации очевидно, наступает позже. Кто-то выкладывает статью в тот же день, кто-то публикует материал позже. К чему все это? Расположим на оси Х идентификаторы, а по вертикали даты, и посмотрим фрагмент графика более подробно:
bs8czsu1or3hetvayttkqauztfq.png

Результат — мы видим облако точек над сплошной линией, которое показывает нам распределение времени продолжительности создания статей. Как нетрудно видеть, максимум приходится на интервал до 1–2 недели. Почти вся масса статей создается не более чем за месяц, хотя некоторые статьи публикуются и через несколько месяцев после создания черновика (разумеется, это не гарантирует нам что автор работал над статьей несколько месяцев ежедневно, но результат все же вполне интересный).

Дата и время публикации


Интересный, хотя и интуитивно понятный момент — время публикации статей.
Выведем статистику по рабочим дням:

print("Group by hour (average, working days):")
df_workdays = df[(df['day'] < 5)]
g = df_workdays.groupby(['hour'])
hour_count = g.size().reset_index(name='counts')
grouped =  g.median().reset_index()
grouped['counts'] = hour_count['counts']
print(grouped[['hour', 'counts', 'views', 'comments', 'votes', 'votesperview']])
print()
view_hours = grouped['hour'].values
view_hours_avg = grouped['counts'].values

fig, ax = plt.subplots()
plt.bar(view_hours, view_hours_avg, align='edge', label='Publication Time (Mo-Fr)')
ax.set_xticks(range(24))
ax.xaxis.set_major_formatter(FormatStrFormatter('%d:00'))
plt.legend(loc='best')
fig.autofmt_xdate()
plt.tight_layout()
plt.show()


Зависимость количества статей от времени публикации в будние дни:
dgg9e4jiotmuwbva-2g-_y_pkva.png

Картинка интересна, большинство публикаций приходится на рабочее время. Все же интересно, для большинства авторов написание статей это основная работа, или они просто занимаются этим в рабочее время? ;) А вот график распределения в выходные дни дает другую картину:
0qq2ceeqizt4hxerxmpqcwb9afo.png

Раз уж речь зашла о дате и времени, посмотрим среднее значение просмотров и количество статей по дням недели.

g = df.groupby(['day', 'dayofweek'])
dayofweek_count = g.size().reset_index(name='counts')
grouped =  g.median().reset_index()
grouped['counts'] = dayofweek_count['counts']
grouped.sort_values('day', ascending=False)
print(grouped[['day', 'dayofweek', 'counts', 'views', 'comments', 'votes', 'votesperview']])
print()
view_days = grouped['day'].values
view_per_day = grouped['views'].values
counts_per_day = grouped['counts'].values
days_of_week = grouped['dayofweek'].values
plt.bar(view_days, view_per_day, align='edge', label='Avg.Views/day')
plt.bar(view_days, counts_per_day, align='edge', label='Amount/day')
plt.xticks(view_days, days_of_week)
plt.ylim(bottom=0, top=10000)
plt.show()


Результат интересен:
pqxi-ic6dc7imzwokde5zzf0nc0.png

Как можно видеть, в выходные публикуется заметно меньше статей. Но зато каждая статья набирает больше просмотров, так что публиковать статьи в выходные кажется довольно-таки целесообразным (как было выяснено еще в первой части, активный жизненный цикл статьи не более 3–4х дней, так что первые пара дней являются вполне критичными).

Статья пожалуй, получается слишком длинной. Окончание во второй части.

© Habrahabr.ru