Бесполезный паттерн в полярных координатах, открывающий полезное свойство простых чисел

Началось всё с обсуждение на математическом StackOverflow: Meaning of Rays in Polar Plot of Prime Numbers

«Недавно я начал экспериментировать с gnuplot и быстро сделал интересное открытие. Я построил все простые числа ниже 1 миллиона в полярных координатах, так что для каждого простого p (r, θ) = (p, p). Ничего особенного не ожидал, просто пробовал. Результаты впечатляют».

image

Если посмотреть на простые числа ниже 30000, можно увидеть спиральный узор.
image

Для сравнения — тот же график с наложенными на него числами, кратными 3 и 7. Штрихи выделены желтым цветом, кратные 3 и 7 — зеленым и красным соответственно.

image

Что действительно интересно, так это поведение при увеличении диапазона. Кратные данного числа кажутся спиралевидными по той же схеме в бесконечность, но простые числа начинают образовывать лучи группами по 3 или 4.

image

По сравнению с числами, кратными 3 и 7:

image

Связаны ли эти закономерности с теорема о простых числах? Являются ли эти лучи тем же явлением, что и диагональные линии в Скатерти Улама?

В ответ на объяснение Грега Мартина я решил добавить еще пару графиков. Чтобы понять, почему они актуальны, прочтите его ответ.

(г, θ) = (n, n), n∈N


image

image

Для начала можно поиграться с полярными координатами и рассмотреть все точки с целочисленными координатами: (1,1) (2,2)…

Получаем Архимедову Спираль:

image

Если исключить все числа, кроме простых, то получаем спиральную галактику с пробелами:

image

«Отдаляясь» мы можем увидеть направленные во все стороны лучи, по большей части в группах по 4 штуки:

image

Спирали можно посчитать, их 20 штук:

image

А лучей 280:

image

Если брать все числа, а не только просты, то спирали поровнее и их 44:

image

При самом близком рассмотрении у нас 6 спиралей:

image

Все числа, кратные 6 образуют одну ветку:

image

Остальные рукава спиралей 6к+1, 6к+2 и тд. Почему так? Потому что 6 примерно равно (полному обороту) 2ℼ (6.28318530718). Эта маленькая разница создает иллюзию единой кривой.

Если оставить только простые числа, останется только две спирали (6к+1 и 6к+5):

image

6 — почти полный круг, 44 — еще более точное приближение (44/2ℼ ≈ 7 полных кругов)

image

Только для простых чисел остается 20 рукавов (44к+1, 44к+3, 44к+5…). Функция Эйлера φ (44) = 20.

image

710/2ℼ ≈ 113. (113,00000959)

image

Для простых чисел будут пробелы:

image

Чем дальше отдаляемся, тем отчетливее проявляется кривизна всей структуры.

710=71×5*2. Это объясняет группировку по 4 луча (5) и «отломанные зубцы расчески» (71):

image

Функция Эйлера φ (710) = 280.

По теореме Дирихле, простые числа равномерно распределятся по рукавам.

Вывод


Играясь с визуализацией, можно наткнуться на а) принцип Дирихле б) на приближения числа ℼ (и цепные дроби) в) дойти до функции Эйлера.

Спиралевидная форма — это артефакт, связанный с совпадением с четным числом радианов.

Ролик с русской озвучкой:

P.S.

Еще работы по простым числам:

Цепные дроби от Савватеева:

Алексей Савватеев «Все о записи чисел»:

© Habrahabr.ru