Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов

С днём килокубита, Хабр! Меня зовут Алексей, я исследователь Центра научных исследований и перспективных разработок компании «ИнфоТеКС», аспирант Центра квантовых технологий МГУ. Сегодня поговорим о недавнем анонсе килокубитного квантового компьютера и разберёмся, ознаменовал ли он начало новой эры квантовых вычислителей.

24 октября компанией Atom Computing был представлен пресс-релиз о создании первого в мире квантового компьютера с объёмом вычислительного регистра более 1000 кубитов. Конкретно, компания заявляет о вычислителе с 1225 атомными ловушками, из которых 1180 хранят кубиты.

Подобного рывка в развитии квантовых вычислений следовало ожидать. Компания IBM на протяжении четырёх лет следует своей дорожной карте по квантовым технологиям, и если обещание представить 400+ кубитов к 2023 году в 2019 выглядело крайне амбициозно, если не сказать самонадеянно, то сейчас не осталось никаких сомнений — темпы развития квантовых компьютеров соответствуют самым смелым прогнозам 2018–2020 годов.

Согласно дорожной карте IBM, квантовый вычислитель на 1000+ кубитов должен был появиться как раз до конца 2023 года. Однако, в развитии своих аппаратных разработок IBM сконцентрирована на одном архитектурном направлении — кубитах на основе сверхпроводников. Данная архитектура, безусловно, относится к наиболее развитым, но из-за малого времени жизни кубита с таким устройством задача масштабирования квантовых компьютеров со сверхпроводящей архитектурой сталкивается с большим количеством технических сложностей.

Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. Кубиты данной архитектуры обладают большим временем жизни и меньше подвержены сторонним воздействиям, что потенциально упрощает масштабирование. Квантовый вычислитель на основе атомов в ловушках разрабатывается в Центре Квантовых Технологий МГУ. Именно данную архитектуру используют специалисты Atom Computing в новом вычислителе.

Обратной стороной атомной архитектуры является сложность взаимодействия кубитов. Подобно тому, как любая классическая программа может быть представлена с использованием простейших логических элементов: И, ИЛИ, НЕ, квантовая программа составляется из набора элементарных квантовых гейтов, реализованных в вычислителе аппаратно. Однако для того, чтобы называться универсальным программируемым квантовым компьютером, вычислитель в этом наборе обязательно должен иметь многокубитный запутывающий гейт. Реализация этого гейта представляет для

квантовых вычислителей главную инженерную задачу. Двухкубитные гейты для атомов устроены гораздо сложнее однокубитных, выполняются существенно дольше, и именно их точность, так называемая величина фиделити, определяет эффективность квантового компьютера. Нетрудно в этом убедиться, ознакомившись со свежим выпуском Nature. Статьи «High-fidelity parallel entangling gates on a neutral atom quantum computer«и «High-fidelity gates and mid-circuit erasure conversion in an atomic qubit«заявляют о достижениях в этом направлении. Авторам первой удалось сконструировать 60-кубитный атомный массив, точность выполнения запутывающего гейта в котором достаточно низкая, чтобы потенциально можно было получить устойчивые к ошибкам вычисления при использовании поверхностных кодов. Вторая же предлагает реализацию атомной архитектуры, позволяющую эффективно детектировать возникающие ошибки.

Специалисты Atomic Computing при описании своей работы тоже предоставляют ссылку на работу в Nature, где заявляют о рекордном времени когерентности кубита. В статье можно подробнее ознакомиться с деталями реализации кубитной архитектуры. Результаты действительно впечатляют — время декогеренции в 40 секунд существенно превосходит предыдущие показатели и потенциально позволяет производить очень объёмные вычисления. Конечно, при условии, что информация в кубитах не будет потеряна вследствие неточности применяемых к ним гейтов, особенно двухкубитных. И вот тут информации о характеристиках нового устройства достаточно мало. По какой-то причине авторы не выносят точных значений фиделити двухкубитного гейта в своей системе в первые строки пресс-релиза. Нет этих данных и в упомянутой статье, а документ с общим описанием оригинальной технологии, на который ссылается пресс-релиз, содержит лишь концептуальное объяснение работы двухкубитного гейта для атомов на основе эффекта Ридберговской блокады — давно известного и широко используемого подхода, в оттачивании которого и состоит одна из главных задач на пути масштабирования атомных вычислителей. Вместо этого Atom Computing предоставляет в основном информацию о технологиях создания атомных регистров, точности сохранения в них информации и её дальнейшего считывания.

Таким образом, преждевременно говорить, что мы подошли к окончанию эпохи NISQ — Noisy Intermediate-Scale Quantum computers, шумных квантовых вычислителей среднего масштаба. Для полноценного осознания величины совершенного прорыва необходимо дождаться исчерпывающих данных о точности работы нового компьютера в реальных квантовых алгоритмах.

5697842fbf6d439f4295df0aed3934dc.png

В любом случае, 1000 кубитов — существенный шаг вперёд для индустрии. На уровне идеи 1000-кубитный регистр даёт невероятные возможности, начиная от моделирования квантовой химии, заканчивая эффективным финансовым прогнозированием и атакой 256-битных симметричных шифров. В связи с этим очень полезно ознакомиться с очерком «Что нам делать с 1000 кубитов?» от 2018 года. Также это позволяет лучше осознать, насколько стремительно развивается индустрия квантовых вычислений. И хотя безусловно, число кубитов является главным сдерживающим фактором развития квантовых алгоритмов, получив достаточное число кубитов, мы, как и прежде, возвращаемся к вопросу точности — сколько устойчивых к ошибкам логических кубитов мы можем получить? И на этом этапе каждыйинженер должен открыто и чётко характеризовать разработку, которую ему удалось создать. Этот вопрос ведёт нас к большим результатам, но требует большой работы и исследований.

© Habrahabr.ru