Аэробы. Не ругательство, но честь
Все чаще в научной литературе всплывают статьи о микроорганизмах и их применении в медицине, промышленности и сельском хозяйстве. Но все реже в абзацах с характеристикой и классификацией микробных культур встречаются слова «аэробный» и «анаэробный». Почему так происходит? Все дело в неоднозначности т.н. традиционных наименований.
Анаэробы (от греч. αν — отрицательная частица, греч. αέρ — «воздух» и греч. βιοζ — «жизнь») — общее собирательное наименование организмов, способных жить в условиях частичного или полного отсутствия кислорода. Многие из них получают энергию окислением не кислорода, а другого субстрата (химического, биологического вещества или минерала). Так, существуют серобактерии, азотобактерии и железобактерии, использующие для дыхания окисление соединений серы, азота и железа соответственно.
История вопроса
Как термин «анаэробный» получил широкое применение?
Все дело в том, что впервые ввел его в научный оборот отец микробиологии Луи Пастер. В 1861 году он исследовал брожение, выделяя ответственные за него микроорганизмы, и обнаружил, что бактерии масляно-кислого брожения (т.н. «трупные» бактерии, например, Clostridium) в пробирке с жидкой средой концентрируются на дне оной, в то время как другие свободно плавают в виде взвеси, оседают на стенках или концентрируются у поверхности. Последующие опыты Пастера и его учеников привели к созданию классификации микроорганизмов по толерантности к кислороду.
Старое деление на основе опыта выглядело так. Аэробные и анаэробные бактерии предварительно идентифицируются в жидкой питательной среде по градиенту концентрации O2: 1. Облигатные аэробные бактерии в основном собираются в верхней части пробирки, чтобы поглощать максимальное количество кислорода. (Исключение: микобактерии — рост плёнкой на поверхности из-за восколипидной мембраны). 2. Облигатные анаэробные бактерии собираются в нижней части, чтобы избежать кислорода (либо не дают роста). 3. Факультативные бактерии собираются в основном в верхнем (окислительное фосфорилирование является более выгодным, чем гликолиз), однако они могут быть найдены на всём протяжении среды, так как от O2 не зависят. 4. Микроаэрофилы собираются в верхней части пробирки, но их оптимум — малая концентрация кислорода. 5. Аэротолерантные анаэробы не реагируют на концентрации кислорода и равномерно распределяются по пробирке.
Современная классификация выглядит так:
Факультативные анаэробы: аэробный или анаэробный рост при наличии или отсутствии кислорода.
Микроаэрофильные анаэробы.
Облигатные анаэробы: не способны к аэробному метаболизму, но в различной степени толерантны к кислороду.
Облигатные анаэробы — организмы, которые гибнут в присутствии молекулярного кислорода (свободного О2). Строгих анаэробов немного — это некоторые бактерии, отдельные виды дрожжей, некоторые жгутиконосцы, несколько видов инфузорий и архей. Большая часть анаэробной биоты погибла несколько миллионов лет назад, когда на планете появился свободный кислород в больших количествах. Сейчас многие из них живут глубоко в почве, на дне водоемов и внутри других организмов (паразитические и инфекционные бактерии). Многие из них входят в состав нормальной флоры слизистых оболочек человека и животных, в том числе бактерий-симбионтов ЖКТ.
В свою очередь, облигатные анаэробы подразделяют на:
Строгие анаэробы: выдерживают только ≤0,5% кислорода
Умеренные анаэробы: выдерживают от 2 до 8% кислорода
Аэротолерантные анаэробы: переносят атмосферную концентрацию кислорода в течение ограниченного времени.
Капнеистические анаэробы и микроаэрофилы — «класс» организмов, часто встречавшийся в научных работах по микробиологии до 1991 года. Считается, что капнеистические микроорганизмы и микроаэрофилы требуют пониженной концентрации кислорода и повышенной концетрации углекислого газа: им требуется низкая концентрация кислорода (обычно 2–10%) и, для многих, высокая концентрация углекислого газа (например, 10%), в анаэробных условиях растут, но очень плохо.
Сейчас этот термин в биологии практически не применяют, так как тогда к капнеистическим организмам пришлось бы причислить и человека — ткани животных, культивируемые отдельно от организма (in vitro), также требуют понижения содержания О2 и повышения СО2, иначе верхний слой клеток окисляется и погибает. Животных от подобной участи спасает кожа. Однако в медицине так все еще обозначают некоторые виды инфекционной флоры.
Аэротолерантные анаэробы — организмы, способные переживать некоторое количество кислорода в среде, но не использующие его для своих нужд. При этом организм в присутствии О2 не погибает, продолжая размножаться и расти. К этой группе относятся почти все молочнокислые микроорганизмы, многие маслянокислые бактерии и дрожжи.
Умеренно-строгие анаэробы — организмы, которые могут выживать при низких концентрациях молекулярного кислорода, но не размножаются и не используют его. Гибнут при концентрациях кислорода, превышающих 2 — 8%.
Факультативные анаэробы — организмы, способные в зависимости от условий среды и стадии своего развития жить как в кислородных, так и безкислородных условиях. При этом в условиях наличия кислорода они используют его в процессе обмена веществ, что отличает их от других групп. Кроме очень большой группы эубактерий, факультативными анаэробами могут быть водоросли, растения и даже некоторые животные. Так, например, многие паразитические черви на стадии личинки являются свободноживущими животными, использующими растворенный в воде О2 для дыхания. Однако, попадая в организм хозяина они утрачивают не только органы дыхания, но и «ненужные» циклы биохимических реакций, используя только ресурсы хозяина и субстратное окисление.
Минутка интересных фактов
В начале прошлого века была популярна теория об эволюционной стадийности анаэробов. Считалось, что анаэробные организмы более древние, что анаэробные прокариоты возникли они во времена до появления кислородной атмосферы Земли. Позднее, с меняющимися на планете условиями, некоторые из них эволюционировали в аэробных. Аэробные реакции быстрее, «дешевле» для организма при более высокой продуктивности энергии: при брожении общий выход АТФ составляет 4 молекулы АТФ и 2 молекулы НАД*Н2, тогда как при дыхании общий выход составляет 30 молекул АТФ. Таким образом, аэробы получили эволюционное преимущество.
Однако с открытием анаэробных эукариот, включая анаэробных многоклеточных, эта теория частично потеряла свои позиции. Еще больше вопросов вызвал генетический анализ. Оказалось, что многие облигатные анаэробы никак друг с другом не связаны. Более того, не имеют общего предка. Еще один интересный момент — обнаружилось несколько вторично анаэробных организмов (не путать с вторичными анаэробами при брожении) — в процессе приспособления они частично или полностью утратили способность к кислородному окислению. Так, например, Zymomonas mobilis, а также клостридии произошли от цитохром-содержащих (т.е. скорее всего аэробных) организмов.
Сходства в строении Zymomonas и дрожжей, живущих в похожих средах и осуществляющих брожение
Основы процесса
Для справки:
Люди, да и вообще млекопитающие животные, а также рыбы, птицы, рептилии и амфибии, даже многие черви, грибы и растения относятся к аэробным организмам — для получения энергии нам нужен кислород.
Именно поэтому нам необходимо дышать — кислород, поступающий в легкие, связывается гемоглобином (у некоторых животных — гемоцианином) и разносится по всему организму к каждой клетке тела. Далее каждая клетка самостоятельно проводит цикл окислительно-восстановительных реакций, именуемых клеточным (митохондриальным) дыханием.
Сам процесс дыхания имеет три этапа (подготовительный, безкислородный и кислородный), множество ступеней, побочных продуктов, а также использует вещества, предварительно полученные в других реакциях (ацетил-КоА, убихинон, НАД и другие). Все это доставляется к мембране митохондрий и участвует в окислительном фосфорилировании — непосредственно клеточном дыхании. Оно также называется полным окислением — за бескислородным этапом неполного анаэробного окисления (гликолиза) следует дополнительный.
Общая упрощенная формула этого процесса выглядит так:
Схематично весь цикл изображен на рисунке.
Конечный результат процесса клеточного дыхания — АТФ (аденозин-трифосфат) и СО2. АТФ — это то, что организм использует почти во всех процессах как универсальный источник энергии. По сути своей, молекулы АТФ — это батарейки, а электроно-транспортная цепь на заключительном этапе клеточного дыхания — это «зарядка». Человек и близкие к нему животные используют кислород для получения АТФ. Однако это не единственный путь.
Альтернативы дыхания
Для справки:
В тканях человека может происходить синтез АТФ и безкислородным путем в особых условиях. Так, у бегунов на длинные дистанции при длительной нагрузке на мускулатуру в мышцах заканчивается кислород, а новый с кровью поступать не успевает, как не успевает и доставка АТФ из других источников.
В таком случае включается резервный механизм — анаэробный синтез АТФ.
Анаэробные пути пополнения энергии в организме человека включаются при чрезмерном утомлении, гипоксии (нехватке кислорода для дыхания), воспалениях и нарушениях обмена веществ (например, заболеваниях крови). Три характерных для мышц следующие:
Креатинфосфатазный (фосфогеный или алактатный) механизм — перефосфорилирование между креатинфосфатом и АДФ
Миокиназный — синтез (иначе ресинтез) АТФ при реакции трансфосфорилирования 2 молекул АДФ (аденилатциклаза)
Гликолитический — анаэробное расщепление глюкозы крови или запаса гликогена, заканчивающийся образованием молочной кислоты (иначе именуется «лактатным»).
Они имеют различные триггеры (механизмы запуска), различную эффективность и различное эффективное время работы.
При этом необходимо помнить, что все бескислородные пути клеточного дыхания у человека являются резервным механизмом, защитой от смерти в критической ситуации. Они намного менее эффективны, чем кислородный путь (обеспечивают меньший выход АТФ). Кроме того, все они сильно изменяют рН ткани, что может привести к угнетению других функций и отмиранию клеток.
Итого
В современной литературе термины «аэробный» и «анаэробный» используются редко, в основном для характеристики условий культивирования микроорганизмов, а также в медицине при характеристике инфекционных бактерий.
Систематика не использует анаэробность как такономическую категорию, а генетики и биохимики находят все больше доказательств перехода анаэробных организмов в аэробные формы и обратно. Кроме того, все аэробные организмы так или иначе имеют резервные анаэробные пути получения энергии, оставшиеся в «наследство» и включаемые в критических ситуациях.
Однако фактор аэробности по-прежнему осается важен при исследованиях некоторых инфекционных заболеваний, а также при исследовании микробиоты человека. Более того, некоторые ученые остановили свое внимание на анаэробных организмах экстремальных сред обитания (вулканов, гейзеров, глубоководных впадин, шельфовых льдов и изолированных пещер) с космической целью — выяснить, какой может быть иная жизнь.
Но об этом поговорим в следующий раз.
Всего хорошего и не болейте!
Статья написана биотехнологом Людмилой Хигерович и опубликована в научном сообществе Фанерозой.
Источники:
Обухов Д.К., Кириленко В.Н. Биология. Клетки и ткани. Учебное пособие для СПО — М.: Юрайт, 2018.
Brook I. Antimicrobials therapy of anaerobic infections. J Chemother. 2016 Jun;28(3):143–50.
Wang Q, Song K, Hao X, Wei J, Pijuan M, van Loosdrecht MCM, Zhao H. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere. 2018 Jun;201:25–31.
Morris JG. Obligately anaerobic bacteria in biotechnology. Appl Biochem Biotechnol. 1994 Aug;48(2):75–106.
Michiko M. Nakano, Peter Zuber. Anaerobic growth of a «strict aerobe» (Bacillus subtilis) // Annual Review of Microbiology
Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Rev Environ Contam Toxicol. 2020;251:25–108.
Larry M. Bush, Maria T. Vazquez-Pertejo. Overview of Anaerobic Bacteria — Charles E. Schmidt College of Medicine, Florida Atlantic University, 2019
J.H. Brewer, D.L. Allgeier. Safe self-contained carbon dioxide-hydrogen anaerobic system. — Appl. Microbiol.16:848–850. — 1966
Hanqi Gu, Jian Zhang, Jie Bao. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue // Biotechnology Bioengineering, vol. 112, Issue 9, 07 April 2015