[Перевод] Задачка для пятилетних детей, ставшая «вирусной»

Вся правда о новейшей вирусной задачке из Сингапура и ещё одной исторической загадке с числами

e0ea7855d6d3426f8b50d2702d5aeb9f.jpg

В честь юбилея этой колонки интернет любезно предоставил мне сингапурскую математическую задачку, ставшую вирусной. В середине мая веб был взволнован задачей, которую, якобы дают решать первоклассникам Сингапура, а это дети возрастом от 5 до 7 лет, и которая оказалась настолько сложной, что никто не может её решить.
1ff8329bdfa44b389615e7663a5c1b17.jpg
Внимательно изучите последовательность цифр и заполните пробелы

Но наша история на самом деле про то, как фразы вроде «математическая задачка всколыхнула интернет» стали скучными и предсказуемыми попытками привлечь посетителей на страницу. Поскольку даже краткий взгляд на этот вопрос, который впервые появился на техническом форуме Сингапура, позволяет сказать, что это фото — очевидная подделка. Фотография выглядит отредактированной, а к задаче нет пояснений.

Судя по всему, задачку взяли (и видоизменили) с сайта, посвящённого математическим головоломкам, который ведёт Гордон Бёрджин, американский учитель на пенсии. И в варианте с сайта в левой нижней четверти стоит цифра 20. В сингапурской фотке 0 замазан. Неудивительно, что там нет очевидного решения!

«Я поражён этой подделкой и не знаю, чего они пытались этим достичь, — говорит Бёрджин. — Если их целью было бурное обсуждение и последующее отчаяние, то они своего добились!»

Далее идёт правильный вариант загадки.

1. В каждом из четырёх секторов внешнего круга находится двузначное число, равное сумме трёх чисел, расположенных в углах этого сектора. Числа в отдельных кружках могут меняться от 1 до 9, и каждое из чисел может быть использовано только один раз. Одно из чисел дано вам для того, чтобы начать. Найдите оставшиеся четыре.

13377024c1a548c181e2b8bb0645f67b.jpg

2. Поскольку сингапурская загадка была неправильная — попробуйте предложить вариант задачи, который бы подошёл для приведённой картинки (с затёртым нулём).

Эта загадка напомнила мне задачку из одной из самых интересных книг по истории загадок: «Wakoku chiekurabe», старейшую японскую книгу загадок, опубликованную в 1727 году. Это прекрасная загадка — и, по меньшей мере, она-то как раз родилась на Востоке!

3. Запишите числа от 1 до 9 в чёрных кружочках так, чтобы сумма чисел, находящихся на каждом из двух голубых кругов (включая центральный кружок), а также вдоль горизонтальных и вертикальных линий была одинаковой.

b0984fb1e9e94cef8a0f1d76144683bd.jpg

Это четыре суммы, каждая из которых состоит из пяти слагаемых, и все суммы получаются одинаковыми. Вот картинка из самой книги, на которой изображена схожая задача.

224f7fea773a491584da741f2ae1a845.jpg

Решения


0896213249f842efad6af037fe990565.jpg

1. По часовой стрелке, начиная сверху: 6, 1, 8, 9

Если мы назовём позиции для чисел Север, Восток, Запад, и Юг, то кандидатами для Запада и Юга будут 8 и 9, поскольку Ю + З + 3 = 20, или Ю + З = 17. Но нам известно, что Ю + В + 3 = 12, или Ю + В = 9. Но Ю не может быть 9, поскольку тогда В = 0, а это запрещено. Поэтому Ю = 8, З = 9, С = 6 и В = 1.

2. Мне больше всего понравилось задание, присланное читателем по имени Том Флэннери, поскольку оно оказалось очень простым.

Заполните круги целыми числами так, чтобы сумма секторов в каждом из полукружий равнялась сумме чисел в кружочках.


62c3c6d3bfe24d81bc3ff7994f663fc8.jpg

3. И последняя задача, из японского сборника загадок 1727 года.

Решений может быть много. Вот моё решение:

a4fb7bbba4e343f2b391f6bb9e9eeb35.jpg

Путь к решению помогает проложить догадка — в центре может быть только нечётное число. Выбрав такое число, нужно разделить оставшиеся цифры на пары, которые в сумме дают одно и то же число, и расположить их в противоположных кружочках. Я выбрал 1 для центра, соответственно остаются пары 2 и 9, 3 и 8, 4 и 7, 5 и 6 — все они дают в сумме 11.

© Geektimes