[Перевод] Изучаем блокчейн на практике
Вы читаете эту статью потому, что, как и я, с горячим интересом наблюдаете за возрастающей популярностью криптовалюты. И вам хочется понять, как работает блокчейн — технология, которая лежит в ее основе.
Но разобраться в блокчейне не так-то просто, по крайней мере, по моему опыту. Я корпел над заумными видео, продирался через туториалы и с нарастающей досадой отмечал недостаток иллюстрирующих примеров.
Я предпочитаю учиться в процессе работы. При таком раскладе мне приходится отрабатывать тему сразу на уровне кода, что помогает закрепить навык. Если вы последуете моему примеру, то к концу статьи у вас будет функционирующий блокчейн и ясное понимание, как это все работает.
Но для начала…
Напомню: блокчейн — это неизменяемая, последовательная цепочка записей, которые называются блоками. Они могут заключать в себе транзакции, файлы и, в принципе, любые другие виды данных. Главное здесь — что они связаны друг с другом посредством хэшей.
Если вы не совсем понимаете, что такое хэш, вам сюда.
На кого рассчитано это руководство? На тех, кто без проблем может читать и писать несложный код на Python и в общих чертах представляет, как работают HTTP запросы — мы будет общаться с нашим блокчейном через HTTP.
Что будет нужно для работы? Проверьте, чтобы у вас был установлен Python 3.6+ (вместе с pip). Также вам нужно будет установить Flask и прекрасную библиотеку Requests:
pip install Flask==0.12.2 requests==2.18.4
Ах да, еще вам понадобится HTTP клиент, например, Postman или cURL. Тут подойдет любой.
Где можно посмотреть то, что получится в итоге? Исходный код доступен здесь.
Шаг первый: Делаем блокчейн
Откройте свой любимый текстовый или графический редактор, мне вот, например, нравится PyCharm. Создайте новый файл под названием blockchain.py. Мы будем работать только в этом файле, а если запутаетесь, всегда можно подсмотреть в исходный код.
Представление блокчейна
Сначала мы создаем новый класс, конструктор которого создаст исходный пустой список (где и будет храниться наш блокчейн) и еще один — для транзакций. Вот как выглядит структура класса:
class Blockchain(object):
def __init__(self):
self.chain = []
self.current_transactions = []
def new_block(self):
# Creates a new Block and adds it to the chain
pass
def new_transaction(self):
# Adds a new transaction to the list of transactions
pass
@staticmethod
def hash(block):
# Hashes a Block
pass
@property
def last_block(self):
# Returns the last Block in the chain
pass
Класс Blockchain отвечает за управление цепочкой. Здесь будут храниться транзакции, а также некоторые вспомогательные методы для добавления в цепочку новых блоков. Давайте распишем эти методы.
Как выглядит блок?
В каждом блоке содержится индекс, метка времени (в Unix), список транзакций, доказательство и хэш предыдущего блока.
Вот пример того, как может выглядет отдельный блок:
block = {
'index': 1,
'timestamp': 1506057125.900785,
'transactions': [
{
'sender': "8527147fe1f5426f9dd545de4b27ee00",
'recipient': "a77f5cdfa2934df3954a5c7c7da5df1f",
'amount': 5,
}
],
'proof': 324984774000,
'previous_hash': "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"
}
Теперь идея цепочки должна быть очевидна — каждый блок включает в себя хэш предшествующего. Это очень важно: именно так обеспечивается неизменность цепочки: если хакер повредит какой-либо блок, то абсолютно все последующие будут содержать неверные хэши.
Понятно? Если нет, остановитесь и дайте себе время усвоить эту информацию — именно в ней состоит базовый принцип блокчейна.
Добавляем транзакции в блок
Нам нужно каким-то образом добавлять в блок новые транзакции. За это отвечает метод new_transaction (), работает он достаточно просто:
class Blockchain(object):
...
def new_transaction(self, sender, recipient, amount):
"""
Creates a new transaction to go into the next mined Block
:param sender: Address of the Sender
:param recipient: Address of the Recipient
:param amount: Amount
:return: The index of the Block that will hold this transaction
"""
self.current_transactions.append({
'sender': sender,
'recipient': recipient,
'amount': amount,
})
return self.last_block['index'] + 1
Когда new_transaction () добавляет новую транзакцию в список, он возвращает индекс блока, куда она была записана, следующему, с которым будет осуществляться майнинг. Позже это пригодится следующему пользователю, добавляющему транзакцию.
Помимо создания блока genesis в конструкторе, мы также распишем методы new_block (), new_transaction () и hash ():
import hashlib
import json
from time import time
class Blockchain(object):
def __init__(self):
self.current_transactions = []
self.chain = []
# Create the genesis block
self.new_block(previous_hash=1, proof=100)
def new_block(self, proof, previous_hash=None):
"""
Create a new Block in the Blockchain
:param proof: The proof given by the Proof of Work algorithm
:param previous_hash: (Optional) Hash of previous Block
:return: New Block
"""
block = {
'index': len(self.chain) + 1,
'timestamp': time(),
'transactions': self.current_transactions,
'proof': proof,
'previous_hash': previous_hash or self.hash(self.chain[-1]),
}
# Reset the current list of transactions
self.current_transactions = []
self.chain.append(block)
return block
def new_transaction(self, sender, recipient, amount):
"""
Creates a new transaction to go into the next mined Block
:param sender: Address of the Sender
:param recipient: Address of the Recipient
:param amount: Amount
:return: The index of the Block that will hold this transaction
"""
self.current_transactions.append({
'sender': sender,
'recipient': recipient,
'amount': amount,
})
return self.last_block['index'] + 1
@property
def last_block(self):
return self.chain[-1]
@staticmethod
def hash(block):
"""
Creates a SHA-256 hash of a Block
:param block: Block
:return:
"""
# We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes
block_string = json.dumps(block, sort_keys=True).encode()
return hashlib.sha256(block_string).hexdigest()
Вышеприведенный код, вероятно, в пояснениях не нуждается — я добавил кое-где комментарии и докстринги, чтобы было понятнее. С представлением блокчейна мы практически закончили. Но сейчас вы, должно быть, задаетесь вопросом, как происходит процесс создания, встраивания и майнинга блоков.
Разбираемся с доказательством работы
Алгоритм доказательства работы служит для создания новых блоков в блокчейне (это процесс еще называется майнингом). Цель доказательства работы — вычислить нужное значение, чтобы решить уравнение. Это значение должно быть сложно рассчитать (с математической точки зрения), но легко проверить любому участнику системы. В этом заключается основная идея доказательства работы.
Чтобы стало яснее, давайте рассмотрим очень простой пример.
Допустим, хэш некоторого числа X, помноженного на другое Y, должен оканчиваться на 0. Соответственно, hash (x * y) = ac23dc…0. Для этого упрощенного примера установим x = 5. Прописываем все это на Python:
from hashlib import sha256
x = 5
y = 0 # We don't know what y should be yet...
while sha256(f'{x*y}'.encode()).hexdigest()[-1] != "0":
y += 1
print(f'The solution is y = {y}')
Правильный ответ здесь: y = 21; именно при таком значении получается хэш с 0 в конце:
hash(5 * 21) = 1253e9373e...5e3600155e860
В биткойне алгоритм доказательства работы называется HashCash и не особенно отличается от простенького примера, приведенного выше. Это уравнение, которые майнеры наперегонки пытаются разрешить, чтобы создать новый блок. В целом, сложность определяется тем, сколько символов нужно вычислить в заданной последовательности. За верный ответ майнеры получают вознаграждение в виде одной монеты — в ходе транзакции.
Проверить их решение для системы не составляет труда.
Пишем простое доказательство работы
Теперь давайте пропишем подобный же алгоритм для нашего блокчейна. Условия возьмем в духе вышеприведенного примера:
Найдите число p, которое, будучи хэшировано с доказательством предыдущего блока, дает хэш с четырьмя нулями в начале.
import hashlib
import json
from time import time
from uuid import uuid4
class Blockchain(object):
...
def proof_of_work(self, last_proof):
"""
Simple Proof of Work Algorithm:
- Find a number p' such that hash(pp') contains leading 4 zeroes, where p is the previous p'
- p is the previous proof, and p' is the new proof
:param last_proof:
:return:
"""
proof = 0
while self.valid_proof(last_proof, proof) is False:
proof += 1
return proof
@staticmethod
def valid_proof(last_proof, proof):
"""
Validates the Proof: Does hash(last_proof, proof) contain 4 leading zeroes?
:param last_proof: Previous Proof
:param proof: Current Proof
:return: True if correct, False if not.
"""
guess = f'{last_proof}{proof}'.encode()
guess_hash = hashlib.sha256(guess).hexdigest()
return guess_hash[:4] == "0000"
Мы можем варьировать сложность этой задачи, меняя количество нулей в начале. Но четырех вполне достаточно. Вы можете сами убедиться, что один-единственный дополнительный нолик значительно замедляет процесс поиска решения.
Работа над классом почти завершена и теперь мы готовы начать взаимодействие с ним при помощи HTTP запросов.
Шаг второй: Блокчейн как API
Здесь мы будем использовать Python Flask — микрофреймворк, который облегчает процесс соотнесения конченых пунктов с функциями Python, что позволяет нам осуществлять диалог с блокчейном по Сети при помощи HTTP запросов.
Создаем три метода:
- /transactions/new для создания новой транзакции в блоке
- /mine для майнинга нового блока на сервере
- /chain для возвращения полной цепочки блокчейна.
Настраиваем Flask
Наш «сервер» сгенерирует один-единственный узел сети в блокчейн-системе. Давайте напишем немного шаблонного кода:
import hashlib
import json
from textwrap import dedent
from time import time
from uuid import uuid4
from flask import Flask
class Blockchain(object):
...
# Instantiate our Node
app = Flask(__name__)
# Generate a globally unique address for this node
node_identifier = str(uuid4()).replace('-', '')
# Instantiate the Blockchain
blockchain = Blockchain()
@app.route('/mine', methods=['GET'])
def mine():
return "We'll mine a new Block"
@app.route('/transactions/new', methods=['POST'])
def new_transaction():
return "We'll add a new transaction"
@app.route('/chain', methods=['GET'])
def full_chain():
response = {
'chain': blockchain.chain,
'length': len(blockchain.chain),
}
return jsonify(response), 200
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
Краткие пояснения к тому, что мы добавили:
Строка 15: Инстанцирует узел. Подробнее о Flask можно почитать здесь.
Строка 18: Создает произвольное имя для узла.
Строка 21: Инстанцирует класс Blockchain.
Строки 24–26: Создает конечную точку /mine, то есть запрос GET.
Строки 28–30: Создает конечную точку /transactions/new, то есть запрос POST, так как именно туда мы и будем отсылать данные.
Строки 32–38: Создает конечную точку /chain, который возвращает блокчейн целиком.
Строки 40–41: Запускает сервер на порту 5000.
Конечный пункт для транзакций
Вот как будет выглядеть запрос на транзакцию. Именно это пользователь отсылает на сервер:
{
"sender": "my address",
"recipient": "someone else's address",
"amount": 5
}
Метод класса для добавления транзакции в блок у нас уже есть, поэтому дальше все легко. Давайте напишем функцию для добавления транзакции:
import hashlib
import json
from textwrap import dedent
from time import time
from uuid import uuid4
from flask import Flask, jsonify, request
...
@app.route('/transactions/new', methods=['POST'])
def new_transaction():
values = request.get_json()
# Check that the required fields are in the POST'ed data
required = ['sender', 'recipient', 'amount']
if not all(k in values for k in required):
return 'Missing values', 400
# Create a new Transaction
index = blockchain.new_transaction(values['sender'], values['recipient'], values['amount'])
response = {'message': f'Transaction will be added to Block {index}'}
return jsonify(response), 201
Конечный пункт для майнинга
Именно в этой конечной точке творится вся магия, но ничего особо сложного в нем нет. Она должна делать три вещи:
- Рассчитывать доказательство работы
- Выдавать майнеру (то есть нам) вознаграждение, добавляя транзакцию, с ходе которой мы получаем одну монету
- Встраивать новый блок в цепочку
import hashlib
import json
from time import time
from uuid import uuid4
from flask import Flask, jsonify, request
...
@app.route('/mine', methods=['GET'])
def mine():
# We run the proof of work algorithm to get the next proof...
last_block = blockchain.last_block
last_proof = last_block['proof']
proof = blockchain.proof_of_work(last_proof)
# We must receive a reward for finding the proof.
# The sender is "0" to signify that this node has mined a new coin.
blockchain.new_transaction(
sender="0",
recipient=node_identifier,
amount=1,
)
# Forge the new Block by adding it to the chain
block = blockchain.new_block(proof)
response = {
'message': "New Block Forged",
'index': block['index'],
'transactions': block['transactions'],
'proof': block['proof'],
'previous_hash': block['previous_hash'],
}
return jsonify(response), 200
Обратите внимание, что в качестве получателя созданного блока указан адрес узла. Большая часть того, что мы тут делаем, сводится к взаимодействию с методами нашего класса Blockchain. По завершению этого шага основная работа закончена, можно начинать диалог.
Шаг третий: Диалог с блокчйном
Для взаимодействия с API в рамках системы можно использовать старый-добрый cURL или Postman.
Запускаем сервер:
$ python blockchain.py
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
Давайте попробуем создать блок, отправив запрос GET по адресу localhost:5000/mine:
Теперь создаем новую транзакцию, отправив запрос POST, содержащий ее структуру, по адресу localhost:5000/transactions/new:
Если вы работаете не с Postman, вот как сформулировать аналогичный запрос в cURL:
$ curl -X POST -H "Content-Type: application/json" -d '{
"sender": "d4ee26eee15148ee92c6cd394edd974e",
"recipient": "someone-other-address",
"amount": 5
}' "http://localhost:5000/transactions/new"
Я перезапустил сервер и создал еще два блока, чтобы в итоге получилось три. Давайте изучим получившуюся цепочку через запрос localhost:5000/chain:
{
"chain": [
{
"index": 1,
"previous_hash": 1,
"proof": 100,
"timestamp": 1506280650.770839,
"transactions": []
},
{
"index": 2,
"previous_hash": "c099bc...bfb7",
"proof": 35293,
"timestamp": 1506280664.717925,
"transactions": [
{
"amount": 1,
"recipient": "8bbcb347e0634905b0cac7955bae152b",
"sender": "0"
}
]
},
{
"index": 3,
"previous_hash": "eff91a...10f2",
"proof": 35089,
"timestamp": 1506280666.1086972,
"transactions": [
{
"amount": 1,
"recipient": "8bbcb347e0634905b0cac7955bae152b",
"sender": "0"
}
]
}
],
"length": 3
}
Шаг четвертый: Консенсус
Все это очень здорово. У нас есть простой блокчейн, который позволяет осуществлять транзакции и создавать новые блоки. Но блокчейн имеет смысл только в том случае, если он децентрализован. А если сделать его децентрализованным, как мы вообще можем гарантировать, что везде будет отображаться одна и та же цепочка? Это называется проблемой консенсуса. Если мы хотим, чтобы в системе было больше одного узла, придется ввести алгоритм консенсуса.
Распознаем новые узлы
Прежде чем внедрять алгоритм консенсуса, нам нужно что-то предпринять, чтобы каждый узел в системе знал о существовании соседних. У каждого узла в системе должен быть реестр всех остальных узлов. А значит понадобятся дополнительные конечные точки:
- /nodes/register, который будет принимать список новых узлов в URL формате
- /nodes/resolve для внедрения алгоритма консенсуса, который будет разрешать возникающие конфликты и отслеживать, чтобы в узле содержалась правильная цепочка.
Нам нужно подкорректировать конструктор блокчейна и обеспечить метод для регистрации узлов:
...
from urllib.parse import urlparse
...
class Blockchain(object):
def __init__(self):
...
self.nodes = set()
...
def register_node(self, address):
"""
Add a new node to the list of nodes
:param address: Address of node. Eg. 'http://192.168.0.5:5000'
:return: None
"""
parsed_url = urlparse(address)
self.nodes.add(parsed_url.netloc)
Заметьте: мы использовали set () для хранения списка узлов. Это нехитрый способ гарантировать, что при добавлении новых узлов будет соблюдаться индемпотентность — то есть сколько бы раз мы ни добавляли какой-то конкретный узел, он будет засчитан только единожды.
Внедряем алгоритм консенсуса
Как я уже упоминал, конфликт происходит тогда, когда цепочка одного узла отличается от цепочки другого. Чтобы его устранить, мы введем такое правило: прерогатива всегда у той цепочки, которая длиннее. Иными словами, самая длинная цепочка в системе рассматривается как фактическая. Используя такой алгоритм, мы достигаем консенсуса среди всех узлов системы:
...
import requests
class Blockchain(object)
...
def valid_chain(self, chain):
"""
Determine if a given blockchain is valid
:param chain: A blockchain
:return: True if valid, False if not
"""
last_block = chain[0]
current_index = 1
while current_index < len(chain):
block = chain[current_index]
print(f'{last_block}')
print(f'{block}')
print("\n-----------\n")
# Check that the hash of the block is correct
if block['previous_hash'] != self.hash(last_block):
return False
# Check that the Proof of Work is correct
if not self.valid_proof(last_block['proof'], block['proof']):
return False
last_block = block
current_index += 1
return True
def resolve_conflicts(self):
"""
This is our Consensus Algorithm, it resolves conflicts
by replacing our chain with the longest one in the network.
:return: True if our chain was replaced, False if not
"""
neighbours = self.nodes
new_chain = None
# We're only looking for chains longer than ours
max_length = len(self.chain)
# Grab and verify the chains from all the nodes in our network
for node in neighbours:
response = requests.get(f'http://{node}/chain')
if response.status_code == 200:
length = response.json()['length']
chain = response.json()['chain']
# Check if the length is longer and the chain is valid
if length > max_length and self.valid_chain(chain):
max_length = length
new_chain = chain
# Replace our chain if we discovered a new, valid chain longer than ours
if new_chain:
self.chain = new_chain
return True
return False
Первый метод valid_chain () отвечает за проверку цепочек на валидность, проходя каждый блок и верифицируя и хэш, и доказательство.
resolve_conflicts () — метод, который прорабатывает все соседние узлы: скачивает их цепочки и проверяет их описанным выше способом. Если при этом найдена валидная цепочка длиннее, чем наша, производится замена.
Давайте введем в наш API две конечные точки, один для добавления соседних узлов, другой для разрешения конфликтов:
@app.route('/nodes/register', methods=['POST'])
def register_nodes():
values = request.get_json()
nodes = values.get('nodes')
if nodes is None:
return "Error: Please supply a valid list of nodes", 400
for node in nodes:
blockchain.register_node(node)
response = {
'message': 'New nodes have been added',
'total_nodes': list(blockchain.nodes),
}
return jsonify(response), 201
@app.route('/nodes/resolve', methods=['GET'])
def consensus():
replaced = blockchain.resolve_conflicts()
if replaced:
response = {
'message': 'Our chain was replaced',
'new_chain': blockchain.chain
}
else:
response = {
'message': 'Our chain is authoritative',
'chain': blockchain.chain
}
return jsonify(response), 200
На данном этапе, если хотите, можете привлечь другие машины и насоздавать разных узлов для вашей системы. Или добиться того же используя разные порты на одной машине. Я создал новый узел на другом порте той же машины, и позволил исходному узлу его распознать. Таким образом, получилось два узла: localhost:5000 и localhost:5001.
В узел номер два я добавил побольше блоков, чтобы цепочка получилась однозначно длиннее. После чего вызвал GET /nodes/resolve в первом узле — и алгоритм консенсуса заменил его цепочку на цепочку второго.
Ну, вот и все. Теперь собирайте друзей и тестируйте вам блокчейн совместными усилиями.
Надеюсь, этот материал вдохновит вас на новые идеи. Лично я с большим энтузиазмом наблюдаю за развитием криптовалюты: я уверен, что блокчейн перевернет наши представления об экономике, управлении государством и хранении информации.
В будущем я планирую выпустить вторую часть статьи, где мы добавим в блокчейн механизм валидации транзакций и поговорим о том, как все это можно использовать в продуктах.