Обзор Intel Core i7-10700: процессор «два в одном»

Современные процессоры Intel® Core™ для настольных систем традиционно делятся на две группы: «обычные» и «для энтузиастов». И хотя реальные покупатели руководствуются этим позиционированием далеко не всегда, оно хорошо описывает, чего можно ждать от того или иного чипа.

Процессоры для энтузиастов, которые помечаются литерой K в названии, представляют собой оверклокерские модели с разблокированными множителями, повышенными тактовыми частотами и завышенными рамками тепловых пакетов. Очевидно, эти предложения рассчитаны на более опытных пользователей, для которых не представляет никакой проблемы настроить в системе множество различных параметров и подобрать должный набор комплектующих, включающий подобающую материнскую плату, достойный блок питания и высокоэффективную систему охлаждения.

Процессоры же, которые Intel ориентирует на обычных пользователей, стоят поменьше, но при этом они медленнее и экономичнее. Эти процессоры спроектированы таким образом, чтобы вызывать у конечных пользователей минимум проблем: с ними обычно не требуется никакая особая настройка системы и работает принцип plug and play. Помимо того, что такие CPU не дают доступа к изменению коэффициента умножения, они также имеют более сдержанные частоты и невысокое потребление, позволяющее комплектовать их сравнительно несложными системами охлаждения и не заморачиваться по поводу подбора плат и прочей обвязки.

Что удивительно, процессоры, относящиеся разным группам, часто имеют почти одинаковые модельные номера, хотя очевидно, что их производительность и другие потребительские качества могут различаться очень серьёзно. И особенно явно это проявилось в поколении Comet Lake. В нём оверклокерские модели CPU заметно нарастили свои энергетические аппетиты и получили характеристику типичного тепловыделения на уровне 125 Вт. Процессоры же для обычных систем продолжили существовать в рамках типичного для этого класса теплового пакета 65 Вт, то есть их потребление и тепловыделение оказалось почти вдвое ниже, чем у оверклокерских собратьев. И всё равно наряду с Core i9–10900K существует Core i9–10900, рядом с Core i7–10700K поставлен Core i7–10700, а вместо Core i5–10600K можно приобрести Core i5–10600.

Сосуществование, с одной стороны, похожих, но с другой — совершенно разных моделей натолкнуло нас на мысль о необходимости провести специальное тестирование, которое смогло бы показать, насколько велика разница между ними и как вообще стоит относиться к такому наполнению модельного ряда процессоров Core 10-го поколения. Этот интерес во многом подпитывается тем, что «простые» модели не кажутся бесполезными и для продвинутых пользователей. С одной стороны, они на 10–20% дешевле, но при этом предлагают ровно то же число ядер и потоков, что и флагманские оверклокерские модели. С другой же — их базовые тактовые частоты ниже на целый гигагерц, что наверняка произведёт на неискушённого пользователя пугающее впечатление.

Но даже если существенные различия в номинальных частотах и имеют реальный вес, это не повод заведомо ставить крест на «не-К» моделях. Во-первых, вполне позитивный посыл для заметной части пользователей может нести их тут же обозначенная в спецификациях экономичность. Во-вторых, если посмотреть на максимальные турбочастоты «обычных» моделей, то ситуация с базовыми частотами перестаёт казаться такой страшной, ведь по этой характеристике преимущество оверклокерских модификаций с TDP 125 Вт составляет лишь 100–300 МГц.

В этом материале мы постараемся дать чёткий ответ на вопрос, с чем придётся столкнуться тем, кто выберет для своей системы процессор без индекса «K» в названии: то ли с многоядерным CPU с не самой впечатляющей производительностью, где во главу угла поставлена энергоэффективность, то ли с удешевлённой и лишь немного замедленной версией флагмана, то ли вообще с чем-то средним. В рамках партнёрского проекта компания Intel предоставила нам для подробного исследования процессор Core i7–10700 — многообещающий восьмиядерник, который привлекает официальной ценой на уровне $323.

⇡#Core i7–10700 в подробностях

Рассказывая о Core i7–10700, мы предполагаем, что вы хорошо знакомы с флагманским восьмиядерником Intel для платформы LGA1200 — процессором Core i7–10700K. Если это не так, настоятельно рекомендуем обратиться к соответствующему обзору на нашем сайте.

Дело в том, что если отбросить все оверклокерские возможности, то Core i7–10700 без индекса K оказывается очень близким родственником своего оверклокерского собрата. По крайней мере, оба они основываются на одном и том же кремнии, а значит, различия между ними действительно существуют лишь только на уровне тактовых частот, а также тепловых и энергетических характеристик. В целом же Core i7–10700 — восьмиядерный процессор на базе микроархитектуры Skylake с поддержкой технологии Hyper-Threading, обладающий L3-кешем объёмом 16 Мбайт. Он построен на полупроводниковом кристалле степпинга Q0, который производится по 14-нм техпроцессу (с каким-то числом знаков плюс) и изначально имеет 10 ядер, пара из которых аппаратно заблокирована и неработоспособна. При этом ключевое свойство Core i7–10700 — экономичность: его тепловой пакет вдвое строже, чем у Core i701700K, и целевое тепловыделение установлено в 65 Вт.

Говоря о Core i7–10700K, мы проводили близкие параллели между ним и восьмиядерником прошлого поколения, Core i9–9900K. Следуя этой логике дальше, хочется сказать, что Core i7–10700 выступает идеологическим наследником 65-ваттного Core i9–9900, и это почти правда. Однако есть одна странность: в то время как оверклокерский Core i7–10700K по рабочим частотам чуть превосходит Core i9–9900K, обычный Core i7–10700, напротив, немного уступает предшественнику для платформы LGA1151v2.

Насколько существенные эти различия, можно оценить по следующей таблице:

Core i7–10700KCore i7–10700Core i9–9900KCore i9–9900
Платформа LGA1200 LGA1200 LGA1151v2 LGA1151v2
Техпроцесс, мм 14 14 14 14
Ядра/потоки 8/16 8/16 8/16 8/16
Номинальная частота, ГГц 3,8 2,9 3,6 3,1
Макс. турбо, 1 ядро, ГГц 5,1 4,8 5,0 5,0
Макс. турбо, все ядра, ГГц 4,7 4,6 4,7 4,6
L3-кеш, Мбайт 16 16 16 16
TDP, Вт 125 65 95 65
Память DDR4–2933 DDR4–2933 DDR4–2666 DDR4–2666
Линии PCIe 16 × Gen3 16 × Gen3 16 × Gen3 16 × Gen3
Встроенная графика Есть Есть Есть Есть
Цена $374 $323 $488 $423

Логика такова, что если в прошлом поколении процессоры Core i9–9900K и Core i9–9900 были максимально приближены друг к другу по формальной частотной формуле, а различие между ними пролегало по величине TDP, то в поколении Comet Lake компания Intel отдалила Core i7–10700K и Core i7–10700 друг от друга, в частности, и по частотам. Именно по этой причине Core i7–10700 выглядит на фоне Core i9–9900 немного менее интересно.

Однако не нужно забывать о нюансах. Максимальные частоты, которые процессорам позволено развивать в турборежиме, у Core i7–10700 и Core i9–9900 сконфигурированы с разрывом 100–200 МГц.

  Максимальная частота в турборежиме, ГГц База, ГГц
1 ядро 2 ядра 3 ядра 4 ядра 5 ядер 6 ядер 7 ядер 8 ядер
Core i7–10700K 5,1 5,1 5,0 4,8 4,8 4,7 4,7 4,7 3,8
Core i7–10700 4,8 4,8 4,7 4,7 4,6 4,6 4,6 4,6 2,9
Core i9–9900K 5,0 5,0 4,9 4,8 4,8 4,7 4,7 4,7 3,6
Core i9–9900 5,0 5,0 4,9 4,8 4,8 4,7 4,7 4,6 3,1

При этом, хотя для Core i7–10700 и Core i9–9900 заявляется один и тот же тепловой пакет, процессор более нового поколения имеет гораздо более либеральный предел PL2 (ограничение потребления при кратковременных нагрузках), что позволяет ему выходить за 65-ваттную границу значительно дальше, чем представителю поколения Coffee Lake.

PL1, ВтPL2, ВтTau, секунды
Core i7–10700K 125 229 56
Core i7–10700 65 224 28
Core i9–9900K 95 119 28
Core i9–9900 65 81 28

Фактически при кратковременных нагрузках продолжительностью менее 28 секунд Core i7–10700 имеет возможность беспрепятственно работать на своей максимальной турбочастоте. Предел PL2 в 224 Вт если и способен как-то повлиять на частотную формулу, то влияние это будет крайне незначительным. Какое-то ощутимое замедление Core i7–10700 может произойти лишь тогда, когда серьёзная нагрузка на процессор будет носить продолжительный и непрерывный характер.

Как это выглядит на практике, можно посмотреть на следующем графике. На нём мы показали реальные частоты и энергопотребление Core i7–10700 во время выполнения теста рендеринга в Cinebench R20.

Первые 20 секунд теста Core i7–10700 беспрепятственно работает на максимальной частоте 4,6–4,7 ГГц. Его энергопотребление при этом достигает порядка 150 Вт, но это — в рамках правил, ведь оно не выходит за границу PL2. К 65-ваттному потреблению процессор приходит лишь спустя какое-то время, и, для того чтобы соответствовать спецификации и не выходить за предел PL1, его частота сбрасывается до 3,6–3,7 ГГц, то есть на 20–25%.

При этом очень важно, что все пределы по потреблению, которые описываются спецификацией для Core i7–10700, на самом деле не являются обязательными. Хотя рассматриваемый процессор и не относится к числу оверклокерских, а его коэффициент умножения невозможно повысить, изменять пределы потребления вручную для него не возбраняется — соответствующие настройки доступны в BIOS практически любой материнской платы. В результате пользователи, которым не требуется ограничивать энергопотребление, могут с лёгкостью сконфигурировать Core i7–10700 так, чтобы он руководствовался исключительно частотной формулой турборежима, игнорируя при этом все паспортные ограничения, касающиеся тепловыделения и энергопотребления.

Получается, что Core i7–10700 — тот самый случай, когда можно говорить про процессор «два в одном»: либо энергоэффективный, если точно следовать всем спецификациям и соблюдать пределы PL1 и PL2, либо довольно резвый, если эти пределы отключить. Как сочетаются эти две сущности, мы отобразили на следующем графике, где показаны реальные частоты Core i7–10700 в многопоточном тесте рендеринга Cinebench R20:  в одном случае — при условии, что для процессора включено определённое спецификацией 65-ваттное ограничение, а в другом — в состоянии со снятыми пределами PL1 и PL2.

Естественно, всё это сказывается и на быстродействии. Работая без ограничений, Core i7–10700 набирает в Cinebench R20 порядка 4890 баллов, но в энергоэффективном 65-ваттном состоянии этот показатель опускается до 3880 баллов.

Всё это подводит нас к выводу, что Core i7–10700 совсем не похож на Core i7–10700K, который при активации пределов энергопотребления PL1 и PL2 теряет в производительности совсем незначительно. Про Core i7–10700 такое сказать невозможно: включение пределов энергопотребления превращает его в совершенно иной с точки зрения практических характеристик CPU. Производительность, если судить по показателю Cinebench R20, снижается примерно на 20%.

Какая картина получается при сравнении реального потребления Core i7–10700 в двух вариантах конфигурации, показано на следующем графике, который составлен на основании измерений в Cinebench R20 при различных ограничениях по числу активных потоков. По этому графику хорошо видно, что в отведённые для него 65 Вт Core i7–10700 вмещается лишь при четырёхпоточном рендеринге.

А вот как выглядят температуры этого процессора в лимитированном 65-ваттной величиной режиме и при снятии ограничений по энергопотреблению. Для отвода тепла в данном тесте использовался кулер Noctua NH-U14S.

Вывод из этих графиков вполне очевиден: если пределы потребления остаются в силе, то из Core i7–10700 получается очень экономичный и довольно-таки холодный процессор, несмотря на то, что речь идёт про 14-нм восьмиядерник. Поэтому не стоит удивляться комплектному кулеру, который вложен в коробку с этим процессором. Он имеет сравнительно небольшие габариты и лишён каких бы то ни было тепловых трубок. Зато он наверняка поместится даже в компактные системы форм-фактора Mini-ITX.

Любопытно, что по сравнению с теми системами охлаждения, которыми Intel комплектовала свои процессоры прошлых поколений, кулер для Core i7–10700 имеет заметные внешние отличия: он анодирован в чёрный цвет, что заставляет его смотреться куда современнее и благороднее.

⇡#Описание тестовой системы и методики тестирования

Процессоры Core i7–10700K и Core i7–10700 расходятся в цене на весомые $50. Такая сумма может стать серьёзным аргументом в пользу более дешёвого варианта. Особенно если принять во внимание его не столь существенные отличия от старшего собрата по частоте при условии снятых пределов по потреблению.

Именно поэтому у нас возникло два вопроса, ответу на которые и было посвящено данное тестирование. Вопрос первый: насколько сильно Core i7–10700 отстаёт от Core i7–10700K, если для первого отменить все пределы PL1 и PL2. И второй: какую долю производительности потеряют те пользователи, которые захотят от Core i7–10700 не погони за старшим собратом, а именно экономичности. Ведь в конце концов, 65-ваттный восьмиядерник — это, в частности, и очень привлекательный вариант для использования в системах с небольшими габаритами.

Чтобы ответить на эти вопросы, мы провели сравнительное тестирование, в котором были задействованы следующие комплектующие:

  • процессоры:
    • Intel Core i7–10700K (Comet Lake, 8 ядер + HT, 3,8–5,1 ГГц, 16 Мбайт L3);
    • Intel Core i7–10700 (Comet Lake, 8 ядер + HT, 2,9–4,8 ГГц, 16 Мбайт L3);
  • процессорный кулер: Noctua NH-U14S;
  • материнская плата: ASUS ROG Maximus XII Hero (Wi-Fi) (LGA1200, Intel Z490);
  • память: 2 × 16 Гбайт DDR4–3600 SDRAM, 16–19–19–39 (G.Skill TridentZ Neo F4–3600C16D-16GTZNC);
  • видеокарта: NVIDIA GeForce RTX 2080 Ti (TU102, 1350/14000 МГц, 11 Гбайт GDDR6 352-бит);
  • дисковая подсистема: Samsung 970 EVO Plus 2TB (MZ-V7S2T0BW);
  • блок питания: Thermaltake Toughpower DPS G RGB 1000W Titanium (80 Plus Titanium, 1000 Вт).

Процессор Core i7–10700K мы тестировали при тех настройках, которые ему выставляют материнские платы по умолчанию — то есть сразу с отменёнными пределами по потреблению. При этом Core i7–10700 был протестирован в двух состояниях — экономичном 65-ваттном и при снятии пределов PL1 и PL2.

Тестирование выполнялось в операционной системе Microsoft Windows 10 Pro (v2004) Build 19041.208 с использованием следующего комплекта драйверов:

  • Intel Chipset Driver 10.1.18295.8201;
  • NVIDIA GeForce 451.67 Driver.

Описание использовавшихся для измерения вычислительной производительности инструментов:

Приложения:

  • 7-zip 19.00 — тестирование скорости архивации. Измеряется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 3,1 Гбайт. Используется алгоритм LZMA2 и максимальная степень компрессии.
  • Adobe Photoshop 2020 21.2.1 — тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта Puget Systems Adobe Photoshop CC Benchmark 18.10, моделирующего типичную обработку изображения, сделанного цифровой камерой.
  • Adobe Photoshop Lightroom Classic 9.3 — тестирование производительности при пакетной обработке серии изображений в RAW-формате. Тестовый сценарий включает постобработку и экспорт в JPEG с разрешением 1920 × 1080 и максимальным качеством двухсот 16-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Fujifilm X-T1.
  • Adobe Premiere Pro 2020 14.3.1 — тестирование производительности при нелинейном видеомонтаже. Измеряется время рендеринга в формат YouTube 4K проекта, содержащего HDV 2160p30 видеоряд с наложением различных эффектов.
  • Blender 2.83.3 — тестирование скорости финального рендеринга в одном из популярных свободных пакетов для создания трёхмерной графики. Измеряется продолжительность построения финальной модели pavillon_barcelona_v1.2 из Blender Benchmark.
  • Topaz Video Enhance AI v1.3.8 — тестирование производительности в основанной на ИИ программе для улучшения детализации видео. В тесте используется исходное видео в разрешении 640×360, которое увеличивается в два раза с использованием модели Theia-Detail: UE, P.
  • V-Ray 4.10.03 — тестирование производительности работы популярной системы рендеринга при помощи стандартного приложения V-Ray Benchmark Next;
  • x265 3.2+9 10bpp — тестирование скорости транскодирования видео в формат H.265/HEVC. Для оценки производительности используется исходный 2160p@24FPS AVC-видеофайл, имеющий битрейт около 42 Мбит/с.

Игры:

  • Assassin«s Creed Odyssey. Разрешение 1920 × 1080: Graphics Quality = Ultra High. Разрешение 2560 × 1440: Graphics Quality = Ultra High.
  • Civilization VI: Gathering Storm. Разрешение 1920 × 1080: DirectX 12, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra. Разрешение 2560 × 1440: DirectX 12, MSAA = 4x, Performance Impact = Ultra, Memory Impact = Ultra.
  • Far Cry 5. Разрешение 1920 × 1080: Graphics Quality = Ultra, HD Textures = On, Anti-Aliasing = TAA, Motion Blur = On. Разрешение 2560 × 1440: Graphics Quality = Ultra, Anti-Aliasing = Off, Motion Blur = On.
  • Hitman 2. Разрешение 1920 × 1080: DirectX 12, Super Sampling = 1.0, Level of Detail = Ultra, Anti-Aliasing = FXAA, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = On, Shadow Maps = Ultra, Shadow Resolution = High. Разрешение 2560 × 1440: DirectX 12, Super Sampling = 1.0, Level of Detail = Ultra, Anti-Aliasing = FXAA, Texture Quality = High, Texture Filter = Anisotropic 16x, SSAO = On, Shadow Maps = Ultra, Shadow Resolution = High.
  • Shadow of the Tomb Raider. Разрешение 1920 × 1080: DirectX12, Preset = Highest, Anti-Aliasing = TAA. Разрешение 2560 × 1440: DirectX12, Preset = Highest, Anti-Aliasing = Off.
  • Total War: Three Kingdoms. Разрешение 1920 × 1080: DirectX 12, Quality = Ultra, Unit Size = Extreme. Разрешение 2560 × 1440: DirectX 12, Quality = Ultra, Unit Size = Extreme.
  • World War Z. Разрешение 1920 × 1080: DirectX11, Visual Quality Preset = Ultra. Разрешение 2560 × 1440: DirectX11, Visual Quality Preset = Ultra.

Во всех игровых тестах в качестве результатов приводится среднее количество кадров в секунду, а также 0,01-квантиль (первая перцентиль) для значений FPS. Использование 0,01-квантиля вместо показателей минимального FPS обусловлено стремлением очистить результаты от случайных всплесков производительности, которые были спровоцированы не связанными напрямую с работой основных компонентов платформы причинами.

⇡#Тесты производительности

⇡#Производительность в комплексных тестах

Тест PCMark 10 позволяет оценить ситуацию с производительностью в случае использования системы в неких общеупотребительных сценариях, которые приходится выполнять в повседневной работе обычным пользователям. И как показывают результаты, в этом случае разница между Core i7–10700K и Core i7–10700 почти не ощущается. Более того, если Core i7–10700 запереть внутри 65-ваттного предела, он тоже покажет почти такое же быстродействие. И это значит, что, пока речь не идёт о какой-то ресурсоёмкой вычислительной нагрузке, все восьмиядерники Intel приблизительно эквивалентны.

В 3DMark Time Spy ситуация иная. В этом бенчмарке создаётся серьёзная процессорная многопоточная нагрузка, и ограничения по энергопотреблению начинают играть заметную роль. В процессорном подтесте 65-ваттный вариант Core i7–10700 отстаёт от себя же безлимитного очень заметно. Но при этом отрадно, что если не фокусироваться на экономичности, то разрыв в производительности Core i7–10700 и Core i7–10700K сокращается до минимума.

⇡#Производительность в приложениях

Нет ничего удивительного в том, что 65-ваттное ограничение, действующее для Core i7–10700, в ресурсоёмких задачах выливается в серьёзное снижение производительности. Как было показано в первой части статьи, частота процессора из-за такого ограничения может снижаться вплоть до 3,6–3,7 ГГц. Поэтому в ряде случаев скорость работы экономичной версии Core i7–10700 может быть ниже, чем у Core i7–10700K, на существенные 25–30%. Однако справедливости ради стоит сказать, что такое случается далеко не всегда. Например, при архивации или обработке изображений разрыв в результатах энергоэффективного и оверклокерского процессоров не такой уж и заметный.

Кроме того, не нужно забывать, что у Core i7–10700, помимо энергоэффективного режима, есть ещё и «режим максимального турбо». В нём никакие ограничения по потреблению не действуют, и производительность подтягивается вплотную к уровню Core i7–10700K. Разница в результатах сокращается до 2–3%, что служит отличной иллюстрацией гибкости Core i7–10700, хотя из спецификации впечатление о нём складывается как о восьмиядернике, в котором экономичность поставлена выше быстродействия.

Рендеринг:

Обработка фото:

Работа с видео:

Перекодирование видео:

Архивация:

⇡#Производительность в играх

Игровые бенчмарки оказались наиболее любопытной частью в тестировании. Как выяснилось, при нагрузке такого рода практически всё равно, какой вариант Core i7–10700 используется в системе — ограниченный строгими рамками теплового пакета или же работающий в безлимитном режиме. Но и это закономерно: в современных играх основная часть нагрузки лежит на видеокарте, процессор же хотя и занят расчётами, они не столь интенсивны. Игры не могут загрузить его настолько, чтобы он долговременно потреблял бы более 65 Вт. Собственно, об этом говорится уже давно: процессоры с восемью ядрами для игр избыточны, поэтому загрузка такого CPU в играх практически никогда не доходит до 100%. Кроме того, в современных играх в первую очередь используются целочисленные скалярные операции, а они не порождают существенного энергопотребления.

В результате, даже если говорить о производительности процессоров в разрешении Full HD, максимальная разница в частоте кадров, обеспечиваемой 65-ваттным Core i7–10700 и безлимитным Core i7–10700K, составляет лишь малозначительные 3%. А это, в свою очередь означает, что приобретать для игровых систем именно процессор с буквой K в модельном номере нет особого смысла.

⇡#Энергопотребление

В тестах энергопотребления в первую очередь мы хотели посмотреть, насколько экономичной окажется платформа на базе Core i7–10700 в сборе. И тесты вполне удовлетворили наше любопытство: система с таким процессором в энергоэффективном, 65-ваттном режиме при максимальной процессорной нагрузке потребляет не более 120 Вт, что более чем вдвое меньше потребления той же платформы, но с процессором, который не сдерживает себя какими-то рамками энергетических аппетитов.

Попутно выяснилась и ещё одна любопытная деталь. В номинальном режиме, с отключёнными лимитами PL1 и PL2, оверклокерский процессор Core i7–10700K оказался экономичнее своего более слабого собрата. При максимальной AVX-нагрузке в Prime95 30.3 разница составила заметные 40 Вт. (В скобках напомним, что приведённые на диаграммах числа — это суммарное потребление тестовых систем, измеренное на выходе из блока питания).

Таким образом, не стоит думать, что для 65-ваттных процессоров Intel выбирает какие-то особые полупроводниковые кристаллы, способные работать при меньших напряжениях и потому имеющие лучшие показатели экономичности. Наш образец Core i7–10700 полностью опровергает это предположение. Скорее даже наоборот, лучший кремний попадает в Core i7–10700K, а пониженное энергопотребление Core i7–10700 обеспечивается простой регулировкой тактовой частоты.

⇡#Выводы

Главный вопрос, на который нам хотелось получить ответ в проведённом исследовании Core i7–10700: насколько сильно он может упасть в глазах энтузиастов из-за того, что его паспортное тепловыделение ограничено величиной 65 Вт? Ответ на него порадует многих: Core i7–10700 можно сконфигурировать так, чтобы из него получился вполне достойный восьмиядерник с хорошим уровнем производительности и, что немаловажно, существенно меньшей ценой, если сравнивать со стоимостью Core i7–10700K. А если в контексте цены вспомнить о версии Core i7–10700 без графического ядра, которая проходит под названием Core i7–10700F, то особо нужно будет сказать, что это — самый дешёвый вариант среди всех восьмиядерных процессоров последнего поколения на российском рынке. Иными словами, сторониться 65-ваттных восьмиядерных процессоров Intel определённо не нужно.

Секрет извлечения из Core i7–10700 производительности, близкой к уровню Core i7–10700K, довольно прост. Intel не стала ограничивать возможности управления пределами потребления, поэтому обозначенную для Core i7–10700 в спецификации величину TDP в 65 Вт можно попросту отменить. Это позволяет вывести рабочие частоты такого процессора на уровень, близкий к частотам Core i7–10700K. Разница при этом составит лишь 100–300 МГц, что означает очень небольшой разрыв в быстродействии, в особенности если говорить про геймерский аспект — частоту кадров в играх. Единственное, не нужно забывать при этом о том, что, несмотря на неоверклокерскую сущность Core i7–10700, использовать его настоятельно рекомендуется в платах на базе набора логики Z490, поскольку только с ними его можно укомплектовать быстрой оперативной памятью, а не DDR4–2933.

Что же касается экономичности Core i7–10700, то и эта его сторона выглядит очень неплохо. Процессор действительно можно вписать в 65-ваттные рамки, для соответствия которым он будет динамически сбрасывать частоту при росте нагрузки, подстраиваясь под установленный предел. Такой сценарий интересен далеко не всегда, но в ряде случаев он всё-таки пригодится: благодаря ему Core i7–10700 становится восьмиядерным процессором, который без каких-либо проблем может вписаться в холодные, тихие и экономичные системы. И хотя потери в производительности относительно Core i7–10700K в пиковых случаях ресурсоёмкой вычислительной нагрузки (вроде рендеринга или перекодирования видео) при этом могут достигать 25–30%, в большинстве распространённых задач и, самое главное, в играх отличие в быстродействии оказывается не слишком значительным. Например, по данным наших тестов, отставание 65-ваттного Core i7–10700 от Core i7–10700K по частоте кадров в играх в разрешении Full HD не превысило 3%, что указывает на возможность использовать Core i7–10700 в компактных геймерских компьютерах, например формата Mini-ITX.

Таким образом, главный вывод, который можно сделать по итогам, стоит сформулировать так: среди восьмиядерных процессоров Intel поколения Comet Lake интерес для энтузиастов представляет не только оверклокерский Core i7–10700K, но и также его младший собрат без литеры К в названии — Core i7–10700. Он дешевле, но при этом удивительно гибок. С одной стороны, это экономичный CPU, хорошо подходящий для систем небольшого формата, а с другой — при отключении пределов потребления он удивительным образом превращается в некое подобие Core i7–10700K, разве только без оверклокерских возможностей. Иными словами, метафора «два в одном» — это как раз про Core i7–10700.

Полный текст статьи читайте на 3DNews