Кейс MediaNation: увеличили продажи на 25% с помощью предиктивной аналитики
ЗаказчикСеть-магазинов «ВОИН» — российская компания, базирующаяся на оптовой и розничной торговле мужской одеждой, обувью и аксессуарами для активного образа жизни.ЗадачаПовысить эффективность рекламных кампаний и получить больше продаж при тех же затратах на рекламу.
Мы использовали инструменты системы сквозной аналитики StreamMyData, внутри которой разработали модели машинного обучения. Они позволяли прогнозировать вероятность совершения покупки пользователей в течение 7 дней — среднего срока принятия решения клиентов этого интернет-магазина.
После создания моделей машинного обучения мы провели A/B-тестирование эффективности рекламных кампаний в Яндекс.Директе: в В-сегменте использовались наши предиктивные модели на основе ML-аудиторий, а A-сегментом работали обычные автостратегии Яндекса.
Процесс создания системы предиктивной аналитики подробно описан в этой статье.
Сроки работ
Подготовительные работы: 1,5 месяца
Тестирование предиктивный моделей: 11 декабря 2023 — 11 января 2024 года
Этап 1. Сбор данных
Прежде мы работали с хитовым и сессионным стримингом, полученным из Google Analytics. Однако новый кейс показал, что действия пользователей, выгруженные из Яндекс.Метрики посредством Logs API, также могут быть использованы при создании будущих ML-моделей.
Сначала мы составили клиенту ТЗ на передачу UserID из CRM клиента и разметку дополнительных событий, которых было около 150: базовые ecommerce события (покупка, добавление товара в корзину, клик по карточке товара и т.д.), использование регулировщика цены, использование поиска, переход в раздел каталога и т.д.
Этап накопления данных занял 3–4 недели.
Этап 2. Конструирование признаков
Собрав данные, мы перешли к написанию SQL-запросов, которые фиксировали определенное поведение пользователя на сайте: например, совершение покупки, стоимость покупки, срок возвращение на сайт после предыдущей покупки и т.д.
Эти типы поведения являются признаками, на которые в дальнейшем будет опираться предиктивная модель.
Для определения признаков мы написали три SQL-запроса на формирование:
Сессионных признаков.
Признаков на основе действий пользователей во время сессий.
Целевого признака — факта совершения покупки в течение 7 дней.
Пример части SQL запроса на выгрузку признаков
Нам удалось сформировать 707 признаков. Такое значительное число позволяет выявить больше закономерностей в действиях пользователей и лучше описать их поведение.
Этап 3. Разработка ML-моделей
Это был самый долгий и трудоемкий этап. Его сложность состояла в том, что необходимо было потратить большое количество времени на продумывание архитектуры, перебор всевозможных гиперпараметров модели и ее обучение. Чем больше данных, тем дольше обучаются модели, и больше вычислительных ресурсов требуется.
Схема ниже демонстрирует, как сформированные признаки попадают в три разные обученные модели, а потом переходят в блок формирования итогового прогноза.
Схема параллельного прогнозирования
Финальный прогноз формируется на основе результатов предсказания всех трех моделей. Мы получаем усредненную вероятность совершения покупки пользователем в течение последующих 7 дней.
Этап 4. Кластеризация пользователей
Как правило, мы создаем пять сегментов пользователей на основе вероятности совершения покупки:
Околонулевая вероятность покупки.
Нулевая вероятность покупки.
Средняя вероятность покупки.
Высокая вероятность покупки.
Очень высокая вероятность покупки.
В первых трех сегментах всегда будет больше людей, тогда как в последних двух сегментах пользователей в разы меньше.
Мы столкнулись с проблемой: Яндекс.Аудитории позволяли создавать сегменты объемом не менее 100 уникальных пользователей. Поэтому мы были вынуждены объединить сегменты и вместо пяти сделать три:
Нулевой + околонулевой.
Средний.
Высокий + очень высокий.
На основе этих сегментов мы создали аудитории в Яндекс.Аудиториях, добавили их в рекламные кампании Яндекс.Директа и присвоили им определенные корректировки:
Понижающий коэффициент для околонулевых сегментов, поскольку эти пользователи не будут совершать покупку, и нет смысла тратить деньги на их привлечение.
Повышающие коэффициенты для остальных сегментов. Чем выше вероятность покупки, тем был выше коэффициент — это позволяло чаще выигрывать рекламные аукционы, демонстрировать рекламу и стимулировать клиентов совершить покупку.
Этап 5. Автоматизация процессов Каждый день поступала новая информация о действиях посетителей сайта, и ML-сегменты необходимо было обновлять. Без регулярного обновления пользователь будет оставаться в самом конверсионном сегменте, даже после того, как совершит покупку, и ему уже не будет смысла показывать рекламу. Обновление также необходимо для дообучения ML-моделей, что повышает точность предсказаний.
Для автоматизации обновления данных мы
Написали необходимый код на Python.
Использовали open-source решение Apache Airflow в роли оркестратора наших процессов. Основной сущностью Airflow является DAG (Directed Acyclic Graph) — направленный ацикличный граф, вершинами которого являются задачи, которые мы зададим при создании самого DAG.
Структура DAG для дообучения ML моделей
1. Создали три отдельных DAG, которые дообучали наши ML-модели. Каждый DAG состоял из четырех отдельных задач (task), первые три из которых на ежедневной основе выгружали данные из Google BigQuery, после чего данные передавались в задачу на дообучение моделей.
Структура DAG для обновления сегментов в Яндекс.Аудитории
2. Написали DAG, который будет автоматизировать процесс обновления сегментов на ежедневной основе ночью.
3. Обратились к Kubernetes — системе оркестрации, которая осуществляла контроль выделения ресурсов под каждую задачу: метчинг User_ID, выгрузку данных о действиях пользователей, формирование предсказаний, сегментирование пользователей.
Этап 6. A/B-тестирование работы ML-сегментов
После автоматизации всех процессов мы перешли к A/B-тестированию ML-сегментов в рекламных кампаниях Яндекс.Директа. В тесте участвовало две рекламные кампании (со смарт-баннерами и текстово-графические кампании), каждая из которых была поделена на две части:
Первая часть работала на автостратегиях Яндекса (сегмент А).
Вторая часть использовала наши ML-сегменты с повышающими или понижающими коэффициентами (сегмент В).
На каждую кампанию мы выделили одинаковый бюджет в неделю и запустили их одновременно. Мы тестировали кампании ровно один месяц с 11 декабря 2023 по 11 января 2024 года, — в это время не вмешивались в настройки объявлений, чтобы результаты были объективными.
Креативы для первой кампании
Креативы для второй кампании
Результаты первой кампании
Сегмент B значительно опередил A по эффективности: принес больше конверсий, добавлений товаров в корзину по более низкому CPA:
Сегмент В принес на 25,7% больше покупок, чем сегмент А, что говорит о правильном выборе корректировок в отношении этой группы.
Итоговое количество добавлений товаров в корзину на 34,4% больше, чем у сегмента A. Это значит, этот сегмент более активный и вовлеченный.
Суммарное значение стоимости добавленных в корзину товаров у сегмента B на 37,2% больше, чем у сегмента A. Это говорит о большем размере среднего чека и заинтересованности пользователей в более дорогих товарах.
Значение CPA у сегмента B на 21,2% ниже, чем у сегмента A, — мы тратили меньше бюджета на привлечение пользователей.
Итоги A/B-тестирование по кампании №1.
Результаты второй кампании
Во время второй рекламной кампании сегмент с ML-корректировками лучше показал себя с т.з. увеличения продаж и суммарной стоимости корзины:
В сегменте B количество добавлений товара в корзину превышает аналогичный показатель в сегменте A на 10,5%.
Суммарная стоимость корзины в сегменте B на 7,2% больше, чем в сегменте A, что указывает на чуть более высокий средний чек.
Итоги A/B-тестирования по кампании №2.
Результаты A/B-тестирования подтверждают высокую эффективность обученных предиктивных ML-моделей в рекламных кампаниях Яндекс Директа. ML-модели корректно предсказывали совершение покупки пользователем в течение последующих 7 дней. А значит, мы можем использовать ML-модели уже в последующих полноценных запусках для клиента.
Отзыв клиента
С октября 2023 г. по январь 2024 г. на базе нашего сайта осуществлялся тест сервиса предиктивной аналитики StreamMyData. Суть теста заключалась в том, чтобы усилить показатели контекстной рекламы в Яндекс Директе, реализовав сегментирование клиентов посредством сервиса.
Тест прошёл успешно, так как кампании, которые использовались в тестировании, показали прирост 25% в количестве конверсий. Результаты и выводы теста были также положительно оценены компанией-подрядчиком по контекстной рекламе.
Мы перешли на постоянное сотрудничество с агентством MediaNation, так как видим большой потенциал в данном сервисе.
Юлия Гнатюк, руководитель отдела электронной коммерции «ВОИН»
Перейти на сайт
Полный текст статьи читайте на CMS Magazine