Блок питания Cooler Master Elite V4 600W 230V: бюджетная модель с ожидаемыми слабыми местами

Розничные предложения

Очередной гость нашей лаборатории на момент написания обзора имел розничную стоимость в районе 3500–4000 рублей, то есть около 50 долларов, что явно указывает на принадлежность этого БП к сегменту ниже среднего. Это подтверждается мнением производителя:

Блоки питания серии Elite v4 — надежный выбор для сборки ПК начального уровня и офисных компьютеров.

Всего в серии Elite 230V V4 представлено пять моделей мощностью от 300 до 600 Вт, и наша Cooler Master Elite 600 230V V4 — старшая из них. Отметим, что серия настолько новая, что еще не представлена на русскоязычном сайте компании.

Штампованная решетка и масса около 1,5 кг только подтверждают наши высказанные выше предположения. Длина корпуса БП составляет около 140 мм, дополнительно понадобится около 10 мм для подвода проводов, поэтому при монтаже стоит рассчитывать на установочный размер порядка 150 мм. Таким образом, данный блок питания без проблем должен уместиться в любой корпус.

Упаковка представляет собой картонную коробку достаточной прочности с матовой полиграфией. В оформлении преобладают оттенки черного и белого цветов.

Характеристики

Все необходимые параметры указаны на корпусе блока питания в полном объеме, для мощности шины +12VDC заявлено значение 552 Вт. Соотношение мощности по шине +12VDC и полной мощности составляет около 0,92, что является средним показателем.

Провода и разъемы

Наименование разъема Количество разъемов Примечания
24 pin Main Power Connector 1 разборный
4 pin 12V Power Connector  
8 pin SSI Processor Connector 1 разборный
6 pin PCI-E 1.0 VGA Power Connector  
8 pin PCI-E 2.0 VGA Power Connector 2  
4 pin Peripheral Connector 3  
15 pin Serial ATA Connector 5 на двух шнурах
4 pin Floppy Drive Connector  

Длина проводов до разъемов питания

  • до основного разъема АТХ — 55 см
  • до процессорного разъема 8 pin SSI — 58 см
  • до первого разъема питания видеокарты PCI-E 2.0 VGA Power Connector — 53 см, плюс 15 см до второго такого же разъема
  • до первого разъема SATA Power Connector — 43 см, плюс 15 см до второго и еще 15 см до третьего такого же разъема
  • до первого разъема SATA Power Connector — 43 см, плюс 15 см до второго такого же разъема
  • до разъема Peripheral Connector («молекс») — 43 см, плюс 15 см до второго и еще 15 см до третьего такого же разъема

Длина проводов до разъемов несколько меньше типовых значений для БП данной ценовой категории. Например, длина проводов до разъема питания процессора составляет порядка 58 см вместо типовых 60–65 см. Впрочем, такой длины все равно будет достаточно для любого корпуса с верхним расположением блока питания, также ее будет достаточно почти для всех корпусов типоразмера miditower высотой до 50 см с нижним расположением блока питания, хотя тут возможны огрехи с аккуратностью и удобством прокладки проводов. А вот в случае более высоких корпусов с нижним расположением блока питания длины проводов для нормального подключения может и не хватить.

Распределение разъемов по шнурам питания не самое удачное, так как полноценно обеспечить питанием несколько зон будет проблематично, особенно если требуется подключение устройств на больших расстояниях от БП. К тому же, все разъемы SATA угловые, что не всегда удобно. Впрочем, в случае типовой системы с парой накопителей сложности маловероятны.

Схемотехника и охлаждение

Блок питания хоть и оснащен активным корректором коэффициента мощности, но рассчитан только на стандартный диапазон питающих напряжений от 200 до 240 вольт.

Основные полупроводниковые элементы установлены на двух радиаторах средних размеров. На первом размещены элементы цепей переменного тока, а на втором — выпрямители.

Платформа явно не самая передовая: реализована групповая стабилизация каналов +5VDC и +12VDC, а также +3.3VDC на отдельном стабилизаторе на базе магнитного усилителя. Все вполне типично для решений бюджетного сегмента.

Конденсаторы в блоке питания представлены преимущественно продукцией под торговой маркой Ltec, включая высоковольтный (330 мкФ, 420 В, 85 градусов). Опять же, ситуация вполне типичная для продуктов данной ценовой категории.

В блоке питания установлен вентилятор BOK BDH12025S типоразмера 120 мм. Вентилятор, согласно официальным данным, основан на подшипнике скольжения и имеет скорость вращения 2000 оборотов в минуту. Подключение двухпроводное через разъем.

Измерение электрических характеристик

Далее мы переходим к инструментальному исследованию электрических характеристик источника питания при помощи многофункционального стенда и другого оборудования.

Величина отклонения выходных напряжений от номинала кодируется цветом следующим образом:

Цвет Диапазон отклонения Качественная оценка
  более 5% неудовлетворительно
  +5% плохо
  +4% удовлетворительно
  +3% хорошо
  +2% очень хорошо
  1% и менее отлично
  −2% очень хорошо
  −3% хорошо
  −4% удовлетворительно
  −5% плохо
  более 5% неудовлетворительно

Работа на максимальной мощности

Первым этапом испытаний является эксплуатация блока питания на максимальной мощности продолжительное время. Такой тест с уверенностью позволяет удостовериться в работоспособности БП.

Кросс-нагрузочная характеристика

Следующим этапом инструментального тестирования является построение кросснагрузочной характеристики (КНХ) и представление ее на четвертьплоскости, ограниченной максимальной мощностью по шине 3,3&5 В с одной стороны (по оси ординат) и максимальной мощностью по шине 12 В с другой (по оси абсцисс). В каждой точке измеренное значение напряжения обозначается цветовым маркером в зависимости от отклонения от номинального значения.

КНХ позволяет нам определить, какой уровень нагрузки можно считать допустимым, особенно по каналу +12VDC, для тестируемого экземпляра. В данном случае отклонения действующих значений напряжения от номинала по каналу +12VDC превышают 5% только при нетипичном для современных систем распределении мощности по каналам, при типовых же значениях отклонения находятся в пределах 5%. А отклонения в пределах 3% возможны при нагрузке до 450 Вт по шине +12VDC.

При типичном распределении мощности по каналам отклонения от номинала не превышают 3% по каналам +3.3VDC и +5VDC и 5% по каналу +12VDC.

Нагрузочная способность

Следующий тест призван определить максимальную мощность, которую можно подать через соответствующие разъемы при нормированном отклонении значения напряжения в размере 3 или 5 процентов от номинала.

В случае видеокарты с единственным разъемом питания максимальная мощность по каналу +12VDC составляет не менее 150 Вт при отклонении в пределах 3%.

В случае видеокарты с двумя разъемами питания при использовании одного шнура питания максимальная мощность по каналу +12VDC составляет не менее 205 Вт при отклонении в пределах 3% и не менее 250 Вт при отклонении в пределах 5%. Показатели не самые выдающиеся, так что использования видеокарты, требующей подачи питания двумя разъемами, лучше избегать. Хотя, с другой стороны, откуда подобная видеокарта возьмется в офисном компьютере или ПК начального уровня?

При нагрузке через разъем питания процессора максимальная мощность по каналу +12VDC составляет не менее 230 Вт при отклонении в пределах 3% и не менее 250 Вт при отклонении в пределах 5%

В случае системной платы максимальная мощность по каналу +12VDC составляет свыше 150 Вт при отклонении 3%. Так как сама плата потребляет по данному каналу в пределах 10 Вт, высокая мощность может потребоваться для питания карт расширения — например, для видеокарт без дополнительного разъема питания, которые обычно имеют потребление в пределах 75 Вт.

Экономичность и эффективность

При оценке эффективности компьютерного блока питания можно идти двумя путями. Первый путь заключается в оценке компьютерного блока питания как отдельного преобразователя электрической энергии с дальнейшей попыткой минимизировать сопротивление линии передачи электрической энергии от БП к нагрузке (где и измеряется ток и напряжение на выходе БП). Для этого блок питания обычно подключается всеми имеющимися разъемами, что ставит разные блоки питания в неравные условия, так как набор разъемов и количество токоведущих проводов зачастую разное даже у блоков питания одинаковой мощности. Таким образом, хотя результаты получаются корректными для каждого конкретного источника питания, в реальных условиях полученные данные малоприменимы, поскольку в реальных условиях блок питания подключается ограниченным количеством разъемов, а не всеми сразу. Поэтому логичным представляется вариант определения эффективности (экономичности) компьютерного блока питания не только на фиксированных значениях мощности, включая распределение мощности по каналам, но и с фиксированным набором разъемов для каждого значения мощности.

Представление эффективности компьютерного блока питания в виде значения КПД (коэффициента полезного действия) имеет свои традиции. Прежде всего, КПД — это коэффициент, определяемый соотношением мощностей на выходе и на входе блока питания, то есть КПД показывает эффективность преобразования электрической энергии. Обычному же пользователю данный параметр почти ничего не скажет, за исключением того, что более высокий КПД вроде как говорит о большей экономичности БП и более высоком его качестве. Зато КПД стал отличным маркетинговым якорем, особенно в комбинацией с сертификатом 80Plus. Однако с практической точки зрения КПД не оказывает заметного влияния на функционирование системного блока: он не увеличивает производительность, не снижает шум или температуру внутри системного блока. Это просто технический параметр, уровень которого в основном определяется развитием промышленности в текущий момент времени и себестоимостью продукта. Для пользователя же максимизация КПД выливается в увеличение розничной цены.

С другой стороны, иногда нужно объективно оценить экономичность компьютерного блока питания. Под экономичностью мы тут подразумеваем потерю мощности при преобразовании электроэнергии и ее передаче к конечным потребителям. И для оценки этого КПД не нужен, так как можно использовать не отношение двух величин, а абсолютные значения: рассеиваемую мощность (разницу между значениями на входе и выходе блока питания), а также потребление энергии источником питания за определенное время (день, месяц, год и т. д.) при работе с постоянной нагрузкой (мощностью). Это позволяет легко увидеть реальную разницу в потреблении электроэнергии конкретными моделями БП и при необходимости рассчитать экономическую выгоду от использования более дорогих источников питания.

Таким образом, на выходе мы получаем понятный для всех параметр — рассеиваемую мощность, которая легко преобразуется в киловатт-часы (кВт·ч), которые и регистрирует счетчик электрической энергии. Умножив полученное значение на стоимость киловатт-часа, получим стоимость электрической энергии при условии эксплуатации системного блока круглосуточно в течение года. Подобный вариант, конечно, чисто гипотетический, но он позволяет оценить разницу между стоимостью эксплуатации компьютера с различными источниками питания в течение длительного периода времени и сделать выводы об экономической целесообразности приобретения конкретной модели БП. В реальных условиях высчитанное значение может достигаться за более долгий период — например, от 3 лет и более. При необходимости каждый желающий может разделить полученное значение на нужный коэффициент в зависимости от количества часов в сутках, в течение которых системный блок эксплуатируется в указанном режиме, чтобы получить расход электроэнергии за год.

Мы решили выделить несколько типовых вариантов по мощности и соотнести их с количеством разъемов, которое соответствует данным вариантам, то есть максимально приблизить методику измерения экономичности к условиям, которые достигаются в реальном системном блоке. Вместе с тем, это позволит оценивать экономичность разных блоков питания в полностью одинаковых условиях.

Нагрузка через разъемы 12VDC, Вт 5VDC, Вт 3.3VDC, Вт Общая мощность, Вт
основной ATX, процессорный (12 В), SATA 5 5 5 15
основной ATX, процессорный (12 В), SATA 80 15 5 100
основной ATX, процессорный (12 В), SATA 180 15 5 200
основной ATX, процессорный (12 В), 6-контактный PCIe, SATA 380 15 5 400
основной ATX, процессорный (12 В), 6-контактные PCIe (1 шнур с 2 разъемами), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 1 разъему), SATA 480 15 5 500
основной ATX, процессорный (12 В), 6-контактные PCIe (2 шнура по 2 разъема), SATA 730 15 5 750

Полученные результаты выглядят следующим образом:

Рассеиваемая мощность, Вт 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 21,2 23,8 26,1 35,3 42,7 40,9 66,6
Super Flower Leadex II Gold 850W 12,1 14,1 19,2 34,5 45 43,7 76,7
Super Flower Leadex Silver 650W 10,9 15,1 22,8 45 62,5 59,2  
High Power Super GD 850W 11,3 13,1 19,2 32 41,6 37,3 66,7
Corsair RM650 (RPS0118) 7 12,5 17,7 34,5 44,3 42,5  
EVGA Supernova 850 G5 12,6 14 17,9 29 36,7 35 62,4
EVGA 650 N1 13,4 19 25,5 55,3 75,6    
EVGA 650 BQ 14,3 18,6 27,1 47,2 61,9 60,5  
Chieftronic PowerPlay GPU-750FC 11,7 14,6 19,9 33,1 41 39,6 67
Deepcool DQ850-M-V2L 12,5 16,8 21,6 33 40,4 38,8 71
Chieftec PPS-650FC 11 13,7 18,5 32,4 41,6 40  
Super Flower Leadex Platinum 2000W 15,8 19 21,8 29,8 34,5 34 49,8
Chieftec GDP-750C-RGB 13 17 22 42,5 56,3 55,8 110
Chieftec BBS-600S 14,1 15,7 21,7 39,7 54,3    
Cooler Master MWE Bronze 750W V2 15,9 22,7 25,9 43 58,5 56,2 102
Cougar BXM 700 12 18,2 26 42,8 57,4 57,1  
Cooler Master Elite 600 V4 11,4 17,8 30,1 65,7 93    
Cougar GEX 850 11,8 14,5 20,6 32,6 41 40,5 72,5
Cooler Master V1000 Platinum (2020) 19,8 21 25,5 38 43,5 41 55,3

Если на низкой мощности экономичность средняя, то с увеличением мощности нагрузки ситуация с экономичностью заметно ухудшается.

Суммарная величина рассеиваемой мощности на средней и низкой нагрузке (до 400 Вт)
  Вт
Enhance ENP-1780 106,4
Super Flower Leadex II Gold 850W 79,9
Super Flower Leadex Silver 650W 93,8
High Power Super GD 850W 75,6
Corsair RM650 (RPS0118) 71,7
EVGA Supernova 850 G5 73,5
EVGA 650 N1 113,2
EVGA 650 BQ 107,2
Chieftronic PowerPlay GPU-750FC 79,3
Deepcool DQ850-M-V2L 83,9
Chieftec PPS-650FC 75,6
Super Flower Leadex Platinum 2000W 86,4
Chieftec GDP-750C-RGB 94,5
Chieftec BBS-600S 91,2
Cooler Master MWE Bronze 750W V2 107,5
Cougar BXM 700 99
Cooler Master Elite 600 V4 125
Cougar GEX 850 79,5
Cooler Master V1000 Platinum (2020) 104,3

В итоге эта модель Cooler Master демонстрирует самую низкую экономичность из всех БП, протестированных по данной методике. Причем при расчете этой характеристики мы учитываем рассеиваемую мощность лишь при низкой и средней нагрузке, так что блоки питания невысокой мощности по определению имеют некоторую фору, но Elite 600 V4 это не помогло.

Потребление энергии компьютером за год, кВт·ч 15 Вт 100 Вт 200 Вт 400 Вт 500 Вт
(1 шнур)
500 Вт
(2 шнура)
750 Вт
Enhance ENP-1780 317 1085 1981 3813 4754 4738 7153
Super Flower Leadex II Gold 850W 237 1000 1920 3806 4774 4763 7242
Super Flower Leadex Silver 650W 227 1008 1952 3898 4928 4899  
High Power Super GD 850W 230 991 1920 3784 4744 4707 7154
Corsair RM650 (RPS0118) 193 986 1907 3806 4768 4752  
EVGA Supernova 850 G5 242 999 1909 3758 4702 4687 7117
EVGA 650 N1 249 1042 1975 3988 5042    
EVGA 650 BQ 257 1039 1989 3918 4922 4910  
Chieftronic PowerPlay GPU-750FC 234 1004 1926 3794 4739 4727 7157
Deepcool DQ850-M-V2L 241 1023 1941 3793 4734 4720 7192
Chieftec PPS-650FC 228 996 1914 3788 4744 4730  
Super Flower Leadex Platinum 2000W 270 1042 1943 3765 4682 4678 7006
Chieftec GDP-750C-RGB 245 1025 1945 3876 4873 4869 7534
Chieftec BBS-600S 255 1014 1942 3852 4856    
Cooler Master MWE Bronze 750W V2 271 1075 1979 3881 4893 4872 7464
Cougar BXM 700 237 1035 1980 3879 4883 4880  
Cooler Master Elite 600 V4 231 1032 2016 4080 5195    
Cougar GEX 850 235 1003 1933 3790 4739 4735 7205
Cooler Master V1000 Platinum (2020) 305 1060 1975 3837 4761 4739 7054

Температурный режим

В данном случае во всем диапазоне мощности термонагруженность конденсаторов находится на невысоком уровне, что можно оценить положительно.

Акустическая эргономика

При подготовке данного материала мы использовали следующую методику измерения уровня шума блоков питания. Блок питания располагается на ровной поверхности вентилятором вверх, над ним на расстоянии 0,35 метра размещается измерительный микрофон шумомера Октава 110А-Эко, которым и производится измерение уровня шума. Нагрузка блока питания осуществляется при помощи специального стенда, имеющего бесшумный режим работы. В ходе измерения уровня шума осуществляется эксплуатация блока питания на постоянной мощности в течение 20 минут, после чего производится замер уровня шума.

Подобное расстояние до объекта измерения является наиболее приближенным для настольного размещения системного блока с установленным блоком питания. Данный метод позволяет оценить уровень шума блока питания в жестких условиях с точки зрения небольшого расстояния от источника шума до пользователя. При увеличении расстояния до источника шума и появлении дополнительных преград, имеющих хорошую звукоотражающую способность, уровень шума в контрольной точке также будет снижаться, что приведет к улучшению акустической эргономики в целом.

При работе в диапазоне мощности до 300 Вт включительно шум данной модели находится на среднетипичном уровне при расположении БП в ближнем поле. При более значительном удалении блока питания и размещении его под столом в корпусе с нижним расположением БП такой шум можно будет трактовать как находящийся на уровне ниже среднего. В дневное время суток в жилом помещении источник с подобным уровнем шума будет не слишком заметен, особенно с расстояния в метр и более, и тем более он будет малозаметен в офисном помещении, так как фоновый шум в офисах обычно выше, чем в жилых помещениях. В ночное время суток источник с таким уровнем шума будет хорошо заметен, спать рядом будет затруднительно. Подобный уровень шума можно считать комфортным при работе за компьютером.

При дальнейшем увеличении выходной мощности уровень шума блока питания заметно повышается.

При нагрузке в 400 Вт шум блока питания уже превышает значение в 40 дБА при условии настольного размещения, то есть при расположении блока питания в ближнем поле по отношению к пользователю. Подобный уровень шума можно охарактеризовать как достаточно высокий.

При мощности 500 Вт шум достигает значения 50,4 дБА. Это очень высокий уровень шума, который доставляет сильный дискомфорт в домашних условиях.

На мощности 600 Вт уровень шума уже заметно превышает порог в 50 дБА.

Таким образом, с точки зрения акустической эргономики данная модель обеспечивает комфорт при выходной мощности в пределах 300 Вт.

Также мы оцениваем уровень шума электроники блока питания, поскольку в некоторых случаях она является источником нежелательных призвуков. Данный этап тестирования осуществляется путем определения разницы между уровнем шума в нашей лаборатории с включенным блоком питания и с выключенным. В случае, если полученное значение находится в пределах 5 дБА, никаких отклонений в акустических свойствах БП нет. При разнице более 10 дБА, как правило, есть определенные дефекты, которые можно услышать с расстояния около полуметра. На данном этапе измерений микрофон шумомера располагается на расстоянии около 40 мм от верхней плоскости БП, так как на бо́льших расстояниях измерение шума электроники весьма затруднительно. Измерение производится в двух режимах: дежурном режиме (STB, или Stand by) и при работающем на нагрузку БП, но с принудительно остановленным вентилятором.

В режиме ожидания шум электроники почти полностью отсутствует. В целом шум электроники можно считать невысоким: превышение фонового шума составило не более 10,6 дБА.

Потребительские качества

Акустическая эргономика у блока питания не самая выдающаяся, но ее вполне можно считать типичной для данной ценовой категории: на мощности свыше 300 Вт шум становится уже не слишком приятным, а при низкой мощности нагрузки не является малозаметным. Общая нагрузочная способность канала +12VDC и индивидуальная нагрузочная способность канала видеоадаптеров тут, мягко говоря, не самые высокие. Провода не очень длинные, а набор разъемов средний. Отметим, правда, использование ленточных проводов, что повышает удобство при сборке. В целом назвать потребительские качества Cooler Master Elite V4 600W 230V хорошими довольно затруднительно.

Итоги

С одной стороны, Cooler Master Elite V4 600W 230V вполне способен обеспечить питанием системный блок начального уровня с одной видеокартой (с одним разъемом, мощностью 150 Вт) или офисный системный блок общей мощностью в пределах 450 Вт. С другой стороны, для этого не обязательно приобретать БП столь высокой мощности (600 Вт): для подобных решений за глаза хватает моделей мощностью 400–450 Вт, если говорить о системах начального игрового уровня, или даже 300 Вт, если говорить об офисном компьютере. Блок питания с подобными характеристиками может быть востребован разве что в тех случаях, когда в системе установлено несколько жестких дисков или иные дополнительные маломощные устройства. Технико-эксплуатационные характеристики протестированной модели вполне типичны для своей ценовой категории: дешевые конденсаторы, вентилятор на втулке, низкая экономичность. Впрочем, в типовых режимах блок питания продемонстрировал вполне адекватные параметры, а также отработал более часа на максимальной мощности, что не может не радовать.

Полный текст статьи читайте на iXBT