Как защитить здание от биологических разрушений?
Обсудить 0
Сегодня, когда счета за коммунальные услуги растут как на дрожжах, важность качественной теплоизоляции — для сохранения тепла зимой, прохлады летом и кошелька круглый год, — очевидна каждому домовладельцу. К сожалению, мало кто при выборе изолирующего материала рассматривает его биостойкость — невосприимчивость к негативным воздействиям живых микроорганизмов. На самом деле, эта проблема касается не только деревянных конструкций. Со временем даже каменный дом превращается в руины, если при его строительстве применять небиостойкие материалы.
С.А. Старцев, 2010 Разрушение оголовка железобетонной колонны в результате жизнедеятельности микроорганизмов
К нарушению целостности конструкций могут приводить самые разные организмы-биодеструкторы. Но ключевую роль в этих процессах играют микробы — прежде всего, повсеместно распространенные бактерии рода Thiobacillus и Acidithiobacillus, а также плесневые грибки Fusarium, Penicillium, и некоторые лишайники. Закрепившись на материале, они могут постепенно разрушать его, даже не используя его непосредственно для питания. Так, Железобактерии Thiobacillus и Acidithiobacillus способны окислять железо для получения энергии. В природе это приводит к появлению «ржавых» водоемов, в строительстве — к повреждениям и разрушениям металлических конструкций.
Wikimedia Commons Железобактерии Thiobacillus и Acidithiobacillus способны окислять железо для получения энергии. В природе это приводит к появлению «ржавых» водоемов, в строительстве — к деградации металлических конструкций.
Цепочка разрушений
Под действием выделяемых микробами органических и неорганических кислот происходит частичное и полное разрушение конструкции, даже построенной из металла, бетона или природного камня. Агрессивно реагируют с материалами биогенные газы — аммиак и метан. Многие продукты жизнедеятельности бактерий играют роль катализаторов, ускоряющих реакции, вызывающие старение материалов. Да и сам по себе рост биомассы в трещинах и внутренних полостях расклинивает их, вызывая механические повреждения.
Дополнительный вклад вносит коррозийное действие влаги, которая постоянно конденсируется на поверхности зданий и сооружений. Дома нагреваются и остывают медленнее естественной окружающей среды, а городской воздух содержит повышенные количества углекислого газа, сульфатов, оксидов азота и других соединений. Все это заметно облегчает жизнь разрушительным микроорганизмам. Недаром реставраторы, занятые восстановлением исторически ценных зданий, обязательно проводят их микробиологическое обследование, разрабатывая меры защиты.
Однако бороться с микробами крайне непросто: оказавшись на субстрате, многие из них способны образовать так называемые биопленки. Выделение клетками клейких слизистых соединений позволяет им намертво прикрепляться к подложке и друг к другу.
Wikimedia Commons Плесневые грибки Fusarium вызывают заболевания растений и способны привести к тяжелому отравлению у человека. Некоторые из них поражают кожу, вызывая дерматиты.
Процесс развивается по цепочке: поврежденные микроорганизмами-деструкторами материалы тепло- и гидроизоляции ведут к нарушению защитных свойств конструкции, и разрушение распространяется чем дальше, тем стремительнее. Неудивительно, что специалисты уделяют большое внимание проблеме биодеструкции, учитывают ее при подготовке строительных норм. Ученые стараются лучше разобраться в том, как она происходит, а потребители начинают интересоваться биостойкостью строительных материалов.
Фазы образования и развития биопленки: прикрепление, рост, распространение.
Барьер
Плиты ПЕНОПЛЭКС — высокоэффективный теплоизоляционный материал нового поколения, изготавливаемый экструзией из полистирола. Теплоизоляция ПЕНОПЛЭКС является химически и физически нейтральной, не впитывает влагу, не подвергается биохимическому и биофизическому воздействию микроорганизмов. Эксперименты показали, что она обладает высочайшей биостойкостью и на воздухе, и в воде.
В исследованиях ученые моделировали реальные условия эксплуатации теплоизоляционного материала в конструкциях зданий и сооружений — фундаментов, полов, стен, кровель. Это потребовало сочетать различные виды негативных воздействий внешней среды на материал: высокую влажность, переменную температуру, присутствие органических и минеральных веществ, вовлечение микроорганизмов-деструкторов.
Для испытаний ПЕНОПЛЭКС использовался комплекс микромицетов и бактерий, подобранных в соответствии с рекомендациями по защите строительных конструкций от коррозии (СП 28.13330.2012) и действующими стандартами (ГОСТ 9.048−89, ГОСТ 9.052−88, ГОСТ 9–049−91). Прежде всего это — микроорганизмы, регулярно обнаруживаются на гидроизоляционных и строительных материалах в различных условиях эксплуатации, а также представляют собой наиболее агрессивные по воздействию на материал и наиболее устойчивые формы.
Эксперименты показали, что инертный материал ПЕНОПЛЭКС не разлагается микробами и не может использоваться для питания. Кроме того, он совершенно не впитывает и, соответственно, не накапливает влагу, не позволяя возникнуть условиям, благоприятствующим развитию бактерий и грибов в порах и пустотах. Наконец, поверхность ПЕНОПЛЭКС оказалась совершенно неподходящей для образования биопленок. В итоге даже при попадании на нее потенциально деструктивных микроорганизмов — что неизбежно в реальных условиях использования — материал не дает им развить достаточно многочисленное и опасное сообщество.
Таким образом, значимым условием и гарантией, предупреждающей развитие микроорганизмов-деструкторов, является грамотный выбор влаго- и биостойкого теплоизоляционного материала, как безопасной и стабильно эффективной составляющей любого конструктива.