Взгляд сквозь дверь: лазер помог ученым заглянуть в запертую комнату

16.09.2021, 19:32
Умение заглядывать в запертую комнату сквозь дверь когда-то было навыком супергероев –, но теперь ученые превзошли их.
Василий Макаров
Взгляд сквозь дверь: лазер помог ученым заглянуть в запертую комнату
Stanford Computational Imaging Lab

Исследователи из Стэнфордской лаборатории компьютерной визуализации создали технологию, благодаря которой всего один луч лазерного света, попадающий в комнату, можно использовать, чтобы увидеть, какие физические объекты находятся внутри

​Получение изображений вне зоны прямой видимости (сокращенно NLOS) — отнюдь не новая идея. Это умный метод, который на протяжении многих лет совершенствовался в исследовательских лабораториях для создания камер, которые могут заглядывать за углы и генерировать изображения объектов, которые в противном случае не попадали бы в поле зрения объектива или были бы заблокированы рядом препятствий. Раньше в этой технике использовались плоские поверхности, такие как полы или стены, которые находились в пределах прямой видимости как камеры, так и объекта, который мешает обзору.

Работает это так: серия световых импульсов, исходящих от камеры (обычно лазерных) отражается от этих поверхностей, а затем отскакивает от скрытого объекта, прежде чем в конечном итоге вернуться к датчикам камеры. Затем алгоритмы используют информацию о том, сколько времени потребовалось свету для возвращения, на основании чего генерируют изображение того, что камера видеть не может. Разрешение результатов невысокое, но обычно они достаточно подробны, чтобы легко определить, о чем идет речь.

Это невероятно умный метод, и однажды он может стать очень полезной технологией для таких устройств, как автономные автомобили, которые потенциально смогут обнаруживать скрытые опасности, спрятанные за углами, задолго до того, как они будут видны пассажирам в транспортном средстве — это поможет избежать внезапных столкновений. Но современные методы NLOS имеют большое ограничение: они зависят от большой отражающей поверхности, на которой можно измерить световые отражения, исходящие от скрытого объекта. Попытка представить, что находится внутри закрытой комнаты снаружи, раньше была практически неосуществима –, но теперь все изменилось.

​Метод визуализации через замочную скважину, разработанный исследователями из Лаборатории компьютерной визуализации Стэнфордского университета, назван так по одной простой причине: все, что нужно, чтобы увидеть, что находится внутри закрытой комнаты, — это крошечное отверстие (например, замочная скважина или глазок), достаточно большое, чтобы сквозь него проходил лазерный луч, создавая единственную точку света на стене внутри помещения. Как и в предыдущих экспериментах, лазерный свет отражается от стены, объекта в комнате, а затем снова от стены, при этом бесчисленные фотоны в конечном итоге возвращаются обратно через отверстие в камеру, которая использует однофотонный лавинный фотодетектор для измерения время их возвращения.

Когда объект, спрятанный в комнате, статичен, новая техника визуализации замочной скважины просто не может рассчитать его параметры. Но исследователи обнаружили, что движущийся объект в паре с импульсами света от лазера генерирует достаточно данных, чтобы алгоритм мог создать его изображение. Качество результатов даже хуже, чем при использовании предыдущих методов NLOS, но он по-прежнему обеспечивает достаточно деталей, чтобы сделать обоснованное предположение о размере и форме скрытого объекта. Деревянный манекен в конечном итоге выглядит как «призрачный ангел», но в сочетании с правильно обученным ИИ распознавания изображений определение того, что человек (или объект в форме человека) находился в комнате, кажется вполне вероятным.

Объекты и то, как их видит алгоритм
Объекты и то, как их видит алгоритм Stanford Computational Imaging Lab

Исследование могло бы однажды предоставить полиции или военным возможность оценить риски проникновения в комнату, прежде чем фактически сломать дверь и ворваться внутрь. Новый метод может также предоставить средства для автономных навигационных систем по обнаружению скрытых опасностей задолго до того, как они станут угрозой в ситуациях, для которых предыдущие методы NLOS не подошли бы из-за факторов окружающей среды.

©  Популярная Механика