Ученые выяснили, как уничтожать раковые опухоли с помощью лазера и наночастиц кремния

31.01.2022, 19:10
Физики МГУ и их коллеги из Нижнего Новгорода исследовали возможность использования кремниевых наночастиц для терапии раковых опухолей на примере узелковой базальноклеточной карциномы — часто встречающегося заболевания кожи человека. Ученые моделировали процесс локальной гипертермии — прицельного нагрева тканей до таких температур, при которых новообразование погибает.
Василий Макаров
Ученые выяснили, как уничтожать раковые опухоли с помощью лазера и наночастиц кремния

С помощью математических расчетов было показано, что кремниевые наночастицы могут усиливать нагрев опухоли, при этом здоровое окружение не повреждается

Отсутствие избирательности радио- и химиотерапии рака, то есть то, что они вредят и здоровым тканям, привело к развитию новых методов, например гипертермических. Их суть заключается в локальном нагреве опухолей свыше определенной температуры (часто 42оС), в результате чего те повреждаются или разрушаются. Повысить температуру можно разными способами, но точечный результат дает применение лазеров.

«Чтобы лазерное излучение по-разному влияло на больные и на здоровые ткани, нужно изменить их оптические характеристики. Если просто светить лазером на опухоль, находящуюся в объеме нормальной ткани, то они обе будут повреждаться из-за близких значений характеристик рассеяния и поглощения света. Один из способов повлиять на это — ввести кремниевые наночастицы в новообразование. Тогда наночастицы изменят оптические свойства раковой ткани, она будет сильнее поглощать лазерное излучение, а значит, и сильнее нагреваться. Благодаря хорошей биосовместимости кремниевые наночастицы можно использовать для этих целей», — рассказывает доцент кафедры общей физики и молекулярной электроники, кандидат физико-математических наук Станислав Заботнов.

Для того, чтобы подобрать оптимальные параметры лазерного воздействия, ученые использовали компьютерное моделирование. В данной работе оно производилось в три этапа. Сперва моделировались оптические характеристики наночастиц и тканей, рассчитывались их коэффициенты рассеяния и поглощения. Второй этап — расчет поглощения излучения в объеме опухоли и здоровой ткани, то есть рассматривалось, как распределяется в них энергия падающего лазерного луча. На третьем этапе по данным о распределении поглощенной энергии переходили к расчету нагрева в каждой конкретной точке модельного объекта. В итоге получилась трехмерная картина, на которой видна температура каждого участка после воздействия лазерного излучения.

Задачей исследования было не просто смоделировать весь процесс, но и подобрать оптимальные параметры лазера, которым облучают опухоль. Например, ученые выяснили, что оптимальный размер лазерного пучка должен быть примерно равен диаметру облучаемой опухоли. Важно отметить, что глубина проникновения анализируемого лазерного излучения красного цвета в ткани организма не более 1 сантиметра — это значит, что опухоль должна располагаться близко к поверхности, непосредственно под верхними слоями кожи. В качестве модельного объекта ученые выбрали базальноклеточную карциному. Это наиболее часто встречающийся тип рака кожи, когда перерождаются быстро делящиеся, а потому очень чувствительные к повреждению ДНК ультрафиолетовыми лучами базальные клетки, которые дают начало плоским, находящимся на самой поверхности.

По результатам моделирования был показан достаточный температурный контраст (до 5оС) между клетками опухоли и окружающими клетками здоровой ткани. Это делает возможным уничтожение карциномы при лазерном нагреве до 42оС, в то время как здоровые ткани останутся практически целыми при меньших температурах. Результаты работы опубликованы в журнале Photonics.

Моделирование производилось для двух типов кремниевых наночастиц: одни были получены в воде, а другие в этаноле. Метод изготовления кремниевых наночастиц называется лазерной абляцией — это процесс удаления вещества с поверхности облучаемой мишени — здесь это кремниевые нанонити. В них атомы слабо связаны друг с другом, а значит, лазеру проще их «выбивать», вдобавок у таких нитей невысокая теплопроводность. Все это позволяет получать нужное количество наночастиц быстрее и в больших объемах, чем если бы абляции подвергался кристаллический кремний.

Почему это важно

Полученные результаты являются необходимым шагом перед проведением реальных экспериментов как на тканевых фантомах (материалах и системах со свойствами, близкими к природным), так и на живых организмах. В ближайшем будущем планируются экспериментальные работы с использованием агаровых фантомов биотканей — они позволят смоделировать ткани организма и их нагрев в зависимости от введения кремниевых наночастиц

Материал предоставлен пресс-службой МГУ

©  Популярная Механика