Ученые создали «ионную супермагистраль» и установили новый мировой рекорд скорости ионов

Учёные из Университета штата Вашингтон и Национальной лаборатории Лоуренса в Беркли совершили прорыв в области нанотехнологий, установив новый мировой рекорд скорости ионов в смешанных органических ионно-электронных проводниках. Эта инновация может привести к значительным улучшениям в различных областях, включая зарядку аккумуляторов, биосенсорику, мягкую робототехнику и нейроморфные вычисления.

Ионно-электронные проводники сочетают преимущества ионной сигнализации, используемой биологическими системами, и электронной сигнализации, применяемой в компьютерах. Однако до сих пор координация движения ионов и электронов в этих проводниках была недостаточно изучена. В ходе исследования команда учёных под руководством физика Брайана Коллинза обнаружила, что ионы двигались относительно медленно внутри проводника, что замедляло электрический ток.

Ученые создали «ионную супермагистраль» и установили новый мировой рекорд скорости ионовРекордные скорости ионов достигаются в органических проводниках, где локальные молекулы могут притягивать или отталкивать ионы из наноканалов, которые действуют как ионные супермагистрали. Источник: Second Bay Studios

«Мы обнаружили, что ионам, которые нормально двигались по проводнику, приходилось проходить через матрицу, похожую на лабиринт, чтобы электроны могли течь. Это замедляло ионы», — пояснил Коллинз.

Для решения этой проблемы исследователи создали канал размером в несколько нанометров, предназначенный исключительно для ионов. Чтобы привлечь ионы в канал, они использовали механизм, аналогичный тому, который применяется в живых клетках: молекулы, которые любят или избегают воду. Команда Коллинза выстилала канал гидрофильными молекулами, любящими воду, которые притягивали ионы, растворённые в воде, также известные как электролиты.

В результате ионы двигались по каналу со скоростью, более чем в 10 раз превышающей скорость движения ионов в чистой воде, что стало новым мировым рекордом скорости ионов в любом материале. «Возможность контролировать эти сигналы способом, который мы прежде не могли реализовать, является довольно мощной. Это ускорение может иметь преимущества для хранения энергии», — отметил Коллинз.

Разработка, подробно описанная в журнале Advanced Materials, может значительно улучшить технологии, которые объединяют биологические и электрические механизмы, такие как нейроморфные вычисления, а также повысить эффективность зарядки аккумуляторов и хранения энергии.

©  iXBT