Новый способ получения кремниевых нанонитей от физиков МГУ
Ученые физического факультета МГУ имени М.В. Ломоносова придумали новый, экологически чистый способ получения кремниевых нанонитей, в котором вместо плавиковой кислоты (HF) используется фторид аммония (NH4F). Кремниевые нанонити — это вытянутые вдоль одного направления, практически параллельные друг другу наноструктуры, похожие на нити, провода, или столбы, выращенные на кремниевой подложке. Диаметр нанонитей, полученных металл-стимулированным химическим травлением, как правило варьируется от 50 до 200 нм, расстояние между нанонитями может составлять от 100 до 500 нм. Длина нанонитей в зависимости от времени травления может варьироваться от 100 нм до десятков микрон. Интерес к кремниевым нанонитям связан с их перспективным применением в микро- и оптоэлектронике, фотонике, фотовольтаике, сенсорике и даже в биомедицине, поскольку кремниевые наноструктуры являются не только биосовместимыми, но и биодеградируемыми (могут полностью растворятся в организме спустя некоторое время). Однако используемая в стандартном методе получения кремниевых нанонитей плавиковая кислота чрезвычайно токсична. Читать далее
Получение кремниевых нанонитей металл-стимулированным травлением заключается в химическом травлении кремниевой пластины, где инициатором травления выступают металлические наночастицы, например, серебра. «Нами был использован двухступенчатый метод травления. На первом этапе серебряные наночастицы осаждались на поверхность кремниевой подложки. Но осаждались не ровным слоем, а островками. На втором этапе происходило травление кремниевой подложки в местах, покрытых серебром. Поэтому непокрытые серебром участки кремниевой пластины превращались в нанонити. Серебряные наночастицы «проваливались» внутрь кремниевой пластины и чем дольше длилось травление, тем более длинные нанонити получались. В конце серебро удалялось с помощью азотной кислоты», — поясняет общую схему создания нанонитей младший научный сотрудник кафедры физики низких температур и сверхпроводимости физического факультета МГУ Кирилл Гончар.
Исследователи из МГУ заменили опасную и токсичную плавиковую кислоту на фторид аммония на всех этапах химического травления, а также изучили оптические свойства кремниевых нанонитей, приготовленных таким способом, и сравнили их с нанонитями, полученными стандартным методом с использованием плавиковой кислоты. Кирилл Гончар поясняет, как возникла мысль использовать в синтезе нанонитей фторид аммония: «Идея использования фторида аммония для электрохимического травления кремния была известна уже более 20 лет назад, но не нашла широкого распространения. Однако, мы являемся первыми, кто перешел к так называемой «зеленой химии», используя фторид аммония на всех этапах метода металл-стимулированного химического травления. При этом, что также было показано в нашей работе, структурные и оптические свойства полученных образцов являются фактически идентичными характеристикам нанонитей, полученных стандартным методом (с использованием плавиковой кислоты). Наша работа является перспективной в рамках масштабных промышленных нетоксичных производств кремниевых нанонитей».
«Нанонити, полученные представленном нами методом, имеют ряд преимуществ: в данных структурах наблюдается сильное рассеяние и локализация света в широком диапазоне спектра, вследствие чего полученные образцы обладают чрезвычайно низким полным отражением света (единицы процентов) как в УФ так и в видимой области спектра; также в наших наноструктурах наблюдается увеличение интенсивности межзонной фотолюминесценции кремния (1.12 эВ) и комбинационного рассеяния света по сравнению с исходными подложками кристаллического кремния; помимо прочего, получаемые нанонити обладают также эффективной фотолюминесценцией в диапазоне 500−1100 нм.
«Таким образом, мы в своей работе открыли огромные возможности применений кремниевых наноструктур, полученных с помощью «зеленой химии». Это и использование в фотовольтаике в качестве антиотражающего покрытия для повышения эффективности солнечных батарей; и в сенсорике в качестве чувствительных элементов оптических сенсоров на различные вещества (за счёт усиления интенсивности сигнала комбинационного рассеяния света, которое является «отпечатком пальцев» молекул); в фотонике и в биомедицине (речь идет о люминесцентных свойствах материала)», поясняет Кирилл.