Нобелевская премия по физике - 2017: гравитационные волны
Всё наше понимание процессов, происходящих во Вселенной, представления о ее структуре сложились на основе изучения электромагнитного излучения, другими словами — фотонов всех возможных энергий, доходящих до наших приборов из глубин космоса. Но фотонные наблюдения имеют свои ограничения: электромагнитные волны даже самых высоких энергий не доходят до нас из слишком далёких областей космоса.
Есть и другие формы излучения — потоки нейтрино и гравитационные волны. Они могут рассказать о том, чего никогда не увидят приборы, регистрирующие электромагнитные волны. Для того, чтобы «увидеть» нейтрино и гравитационные волны, нужны принципиально новые приборы. За создание детектора гравитационных волн и экспериментальное доказательство их существование в этом году удостоились Нобелевской премии по физике трое американских физиков — Райнер Вайс, Кип Торн и Барри Бэрриш.
Слева направо: Райнер Вайсс, Бэрри Бэрриш и Кип Торн.
Существование гравитационных волн предусмотрено общей теорией относительности и было предсказано Эйнштейном еще в 1915 году. Они возникают, когда очень массивные объекты сталкиваются друг с другом и порождают возмущения пространства-времени, расходящиесясо скоростью света во все стороны от места зарождения.
Даже если событие, породившее волну, огромно — например, столкнулись две чёрные дыры — воздействие, которое волна оказывает на пространство-время крайне мал, поэтому зарегистрировать его сложно, для этого нужны очень чувствительные приборы. Сам Эйнштейн считал, что гравиволна, проходя через материю, влияет на нее так мало, что не поддаётся наблюдению. Действительно, самый эффект, который волна оказывает на материю, уловить довольно сложно, зато можно зарегистрировать косвенные эффекты. Именно это сделали в 1974 году американские астрофизики Джозеф Тейлор и Рассел Халс, измерившие излучение двойной звезды-пульсара PSR 1913+16 и доказавшие, что отклонение периода ее пульсации от расчётного объясняется потерей энергии, унесенной гравитационной волной. За это они получили Нобелевскую премию по физике в 1993 году.
14 сентября 2015 года LIGO — лазерно-интерферометрическая гравитационно-волновая обсерватория — впервые напрямую зарегистрировала гравитационную волну. К тому моменту, когда волна достигла Земли, она очень ослабела, но даже этот слабый сигнал означал революцию в физике.
Для того, чтобы это стало возможным, потребовался труд тысячи учёных из двадцати стран, построивших LIGO.
На то, чтобы проверить результаты пятнадцатого года, ушло несколько месяцев, поэтому обнародованы они были только в феврале 2016 года. Кроме главного открытия — подтверждения существования гравиволн — в результатах скрывалось еще несколько: первое свидетельство существования чёрных дыр средней массы (20−60 солнечных) и первое доказательство того, что они могут сливаться.
Чтобы добраться до Земли, гравиволне потребовалось больше миллиарда лет Далеко-далеко, за пределами нашей галактики две чёрных дыры врезались друг в друга, прошло 1,3 миллиарда лет — и LIGO сообщил нам об этом событии.
Энергия гравитационной волны огромна, но амплитуда невероятна мала. Почувствовать ее — всё равно что измерить расстояние до далёкой звезды с точностью до десятых долей миллиметра. LIGO на это способен.
Концепцию разработал Вайсс: еще в 70-е он подсчитал, какие земные явления могут исказить результаты наблюдений, и как от них избавиться. LIGO — это две обсерватории, расстояние между которым — 3002 километра. Гравитационная волна проходит это расстояние за 7 миллисекунд, поэтому два интерферометра во время прохождения волны уточняют показатели друг друга.
Две обсерватории LIGO, в Ливингстоне (штат Луизиана) и в Хэнфорде (штат Вашингтон) находятся на расстоянии 3002 км друг от друга.
У каждой обсерватории есть два четырехкилометровых плеча, исходящие из одной точки под прямым углом друг к другу. Внутри у них — почти идеальный вакуум. В начале и в конце каждого плеча — сложная система зеркал. Проходя через нашу планету, гравитационная волна чуть-чуть сжимает пространство там, где проложен один рукав, и растягивает второй (без волны длина рукавов строго одинакова). Из перекрестья плечей выпускают луч лазера, разделяют его надвое и пускают отражаться по зеркалам; пройдя свою дистанцию, лучи встречаются в перекрестье. Если это происходит одновременно, значит, пространство-время спокойно. А если одному из лучей потребовалось на прохождение плеча больше времени, чем другому — значит, гравитационная волна удлинила его путь и сократила путь второго луча.
Схема работы обсерватории LIGO.
LIGO разработал Вайсс (и, конечно, его коллеги), Кип Торн — ведущий мировой эксперт в теории относительности — выполнил теоретические расчёты, Барри Бэриш присоединился к команде LIGO в 1994 году и превратил небольшую — всего из 40 человек — группу энтузиастов в огромную международную коллаборацию LIGO/VIRGO, благодаря слаженной работе участников которой и стал возможен фундаментальный пропыв, осуществлённый двадцать лет спустя.
Работа на детекторах гравитационных волн продолжается. За первой зарегистрированной волной последовали вторая, третья и четвертая; последнюю «поймали» не только детекторы LIGO, но и недавно запущенный европейский VIRGO. Четвертая гравитационная волна, в отличие от трёх предыдущих, родилась не в абсолютной тьме (в результате слияния чёрных дыр), а при полной иллюминации — при взрыве нейтронной звезды; космические и наземные телескопы зарегистрировали и оптический источник излучения в том районе, откуда пришла волна гравитационная.