Наноалмаз превратили в управляемый источник света
Обсудить 0
Эксперименты показали, что алмазная оболочка вдвое усиливает скорость излучения источников и позволяет управлять ими без дополнительных нано- и микроструктур. Этого удалось добиться с помощью искусственно созданных дефектов в алмазной кристаллической решетке. Полученные результаты важны для разработки квантовых компьютеров и оптических сетей. Работа опубликована в журнале Nanoscale.
Одно из ключевых направлений современной нанофотоники — это создание активных диэлектрических наноантенн: управляемых источников фотонов. Такие наноантенны необходимы для разработки квантовых компьютеров, оптических сетей связи и систем визуализации. Для создания наноантенн сейчас активно используются плазмонные металлические наночастицы. Однако оптические потери и нагрев этих частиц побуждают исследователей искать альтернативные варианты. Например, в Университете ИТМО активно развивается направление диэлектрической нанофотоники: создаются наноантенны на основе перовскитов и кремния. Недавно ученые из Международной лаборатории нанофотоники и метаматериалов Университета ИТМО впервые в мире разработали концепцию активных диэлектрических наноантенн на основе наноалмазов.
Наноалмазы — это углеродные наноструктуры с уникальными свойствами. Они обладают достаточно высоким показателем преломления, высокой теплопроводностью и почти не взаимодействуют с другими веществами. В данной работе ученые использовали наноалмазы с так называемыми центрами азот-вакансия или NV-центрами. Их создают искусственно: при удалении атома углерода из кристаллической решетки алмаза, образовавшаяся вакансия связывается с внедренным атомом азота. Электронным спином такого дефекта легко управлять с помощью света, при помощи него можно записывать квантовую информацию.
Ученые изучили оптические свойства наноалмазов и обнаружили, что их излучение можно усилить, если спектр люминесценции NV-центра совместить с Ми резонансами алмазной наночастицы. Этого можно добиться при определенном положении NV-центра и соответствующем размере частицы. В таком случае можно увеличить фактор Парселла наноалмаза. Этот показатель позволяет оценить, как алмазная оболочка влияет на скорость спонтанного излучения источника. Если фактор Парселла растет, время затухания люминесценции сокращается, а интенсивность сигнала увеличивается, и считать информацию становится гораздо проще.
Электронная микрофотография алмазной наночастицы
По словам ученых, особенность этой работы в том, что такого эффекта удалось добиться, используя только свойства самих наноалмазов. «Как правило, чтобы ускорить излучение, нужно создать сложную систему резонаторов. Но нам удалось добиться схожих результатов без каких-либо дополнительных структур. Мы экспериментально показали, что время затухания люминесценции можно сократить минимум вдвое, используя простую физику», — комментирует Дмитрий Зуев из Международной лаборатории нанофотоники и метаматериалов.
Стоит отметить, что эксперименты проводились на объектах с несколькими NV-центрами. Но исследователи также разработали теоретическую модель поведения источников одиночных фотонов в алмазной оболочке. Расчеты показали, что скорость их излучения может увеличиться в несколько десятков раз. «Сейчас получение одиночного фотона с одного NV-центра в такой наноантенне — довольно сложная задача. А чтобы внедрять активные наноантенны, например, в логические элементы, нужно научиться им управлять. В перспективе разработанная нами концепция позволит эффективно управлять излучением источников одиночных фотонов. Это очень важно для создания квантовых компьютеров и оптических коммуникационных сетей», — отмечает Анастасия Залогина, ведущий автор статьи, сотрудник Международной лаборатории нанофотоники и метаматериалов.