Машинное обучение помогло улучшить солнечные электростанции
Предсказать мощность солнечных электростанций еще на этапе проектирования теперь стало возможным — исследователи разработали алгоритм, рассчитывающий множество параметров будущей системы. Для повышения точности он использует оптимизационные модели с машинным обучением
Фотоэлектрические системы, преобразовывающие почти неограниченный запас солнечной энергии в электричество, являются одними из наиболее перспективных установок альтернативной энергетики. Однако, интеграция фотоэлектрических систем в существующие энергосистемы — непростой процесс. Поскольку выходная мощность таких установок в значительной степени зависит от условий окружающей среды, управляющим электростанциями и электросетями нужны оценки того, сколько энергии они будут вырабатывать. Это поможет специалистам планировать оптимальные графики выработки и технического обслуживания.
На сегодняшний день существует множество алгоритмов, позволяющих оценить мощность, производимую солнечными электростанциями на несколько часов вперед, изучая полученные ранее данные и анализируя текущие переменные. Один их таких алгоритмов называется адаптивной нейронечеткой системой вывода (adaptive neuro-fuzzy inference system/ANFIS). Сегодня он применяется для прогнозирования производительности сложных систем возобновляемой энергетики. Ранее многие исследователи уже объединяли ANFIS с различными алгоритмами машинного обучения, чтобы еще больше повысить его производительность.
В новом исследовании авторы предложили две новые модели на основе этой вычислительной системы. Они получили название «гибридных алгоритмов», поскольку сочетают традиционный подход ANFIS с двумя различными методами оптимизации, которые считаются мощными и вычислительно эффективными стратегиями поиска оптимальных решений энергетических задач.
Чтобы оценить производительность своих моделей, команда сравнила их вычисления с другими гибридными алгоритмами на основе ANFIS. Авторы проверили прогностические способности каждой модели, используя данные реальной фотоэлектрической системы, развернутой в Италии в ходе предыдущего исследования. Одна из двух разработанных учеными моделей превзошла все ранее созданные «гибриды» и показала большой потенциал для прогнозирования фотоэлектрической мощности солнечных систем как на коротком, так и на длинном горизонтах.
Исследование опубликовано в журнале Renewable and Sustainable Energy Reviews.