Каждая может уничтожить страну. Как устроены атомные подводные лодки

Наиболее интересной темой для человечества уже давно стал космос. Но в мире существуют не менее удивительные технические достижения, которые в какой-то степени являются звездолётами из научной фантастики —, но для других стихий.

Взять, например, атомные подводные лодки: эти плавучие реакторы достигают океанского дна, плавают быстрее надводных кораблей и способны месяцами оставаться на глубине.

У них свой космос. Как получилось этого достичь, и где здесь связь с колонизацией других планет?

Принципиальное устройство подводной лодки

Любой подводный аппарат действительно очень похож на звездолёт: плотная среда, склонная к турбулентности при малейшем возмущении, заставляет разработчиков применять сложные формы для оптимизации движения.

Классическая подводная лодка с дизельным или дизель-электрическим агрегатом заимствует многое от надводных кораблей современного типа: есть палуба и остеклённая рубка и даже ватерлиния, разделяющая корпус на 2 части: надводную и подводную.

Такая лодка большую часть времени — при долгих морских переходах, «на марше», — находится в надводном положении; под водой проходит только скрытное выполнение задачи.


Рубка когда-то использовалась по назначению

Кроме внешнего («легкого») корпуса для формирования обводов, подводная лодка имеет внутренний («прочный») корпус, который и выдерживает возрастающее с глубиной забортное давление воды.

Для движения дизельных лодок под водой придумали шноркель — трубу, которая позволяет двигателю забирать воздух, необходимый для его работы, над поверхностью воды.


Палуба сохранилась и на современных атомных подводных лодках

Она позволяет увеличить продолжительность подводного хода, но для его реализации требуется достаточно низкая скорость, отсутствие волнения и небольшая глубина погружения.

Для больших глубин используются аккумуляторы, заряжающиеся от дизельного движителя во время его работы.

Проблемы и ограничения эксплуатации дизельных субмарин


Внешний вид и разрез современной дизель-электрической ПЛ проекта 677 «Лада»

Такая конструкция ограничивает возможности дизельных лодок: снижает скорость, время автономной работы. Кроме того, корпус дизельных лодок не позволяет достигать скоростей свыше 50 км/ч.

Аналогично, принципиальная конструкция ограничивает рост габаритов лодки и её грузоподъемность, защиту. А косвенно — и глубину погружения.

Сегодня дизельные субмарины работают только в прибрежной зоне с малым удалением от берега, хотя ещё во времена Второй Мировой войны он бороздили океаны.

Атомный реактор принципиально изменил эксплуатацию подводных судов из-за огромной мощности и буквально неограниченного запаса энергоносителя, что привело к гонке подводного вооружения и появлению двух школ кораблестроения.

Американская и советская школа кораблестроения


Первая атомная подводная лодка Советского Союза «Ленинский Комсомол»

Появление реактора на борту подводной лодки поставило перед разработчиками 3 задачи: увязать возможности реактора с возможностями лодки, обезопасить экипаж и придумать новые способы применения.

Уже первая атомная подводная лодка СССР К-3 «Ленинский комсомол» получила сигарообразный корпус с минимальной верхней палубой и обтекаемую рубку, напоминающую плавник морского животного.

Корпус американского «Наутилуса» похож на дизельных предшественников: заокеанские коллеги изменили внешнюю конструкцию немного позже, использовав наработки эксплуатации первого подводного атомохода.

На этом фоне появилось четкое разделение путей развития АПЛ: американский и советский.


Первая атомная подводная лодка США USS Nautilus

К моменту запуска «Наутилуса» у инженеров США был готов атомный реактор, поэтому они создавали лодку вокруг реактора. Доказанная надежность позволила использовать одну основную силовую установку, дополненную дизельными агрегатами.

Агрегаты заводов Советского Союза создавались в спешке, поэтому К-3 строилась с дублированием силовой установки. Одновременное проектирование агрегатов и самого судна позволило «элегантнее» разместить экипаж и оборудование.

В дальнейшем это привело к принципиальному отличию: у атомных субмарин США всегда один реактор. Российские и советские строились как с одним, так и с двумя реакторами — в зависимости от размеров судна и его назначения.

Как подразделяются и какие задачи выполняют современные АПЛ


Подводные лодки проекта 941 «Акула» рассматривались в роли подводных транспортов

Традиционно среди атомных субмарин выделяют 3 класса и общую категорию специальных кораблей:

1. Многоцелевые лодки (торпедные) — предназначены для уничтожения кораблей и подлодок противника.

2. Лодки с крылатыми ракетами — российские «заточены» для уничтожения авианосцев, американские — для стратегических и тактических неядерных ударов по наземным целям.

3. Стратегические ракетоносцы — предназначены для скрытного автономного плавания с возможностью нанесения ядерного удара, являются силами сдерживания.

4. Специальные суда — спроектированные с нуля либо переоборудованные из боевых судна для выполнения задач исследования морского дна, картографии, задач РЭБ/связи/разведки, прокладывания подводных коммуникаций.


Ракетный подводный крейсер стратегического назначения проекта 667БДР «Кальмар»

Развитие флота во многом заставило объединить первые под названием «многоцелевые АПЛ» благодаря унификации вооружения. Отдельные огромные скоростные «потайные суда» с большой глубиной погружения ещё сохраняются в строю.

Эволюция подводных лодок с атомным реактором


Подводная лодка проекта «Лира»

Развитие атомных субмарин подарило человечеству 5 условных поколений, связанных общими конструктивными чертами и логикой применения:

1. Первое поколение стало родоначальником атомных субмарин, но было достаточно многочисленно и долго стояло на вооружении. Основной общей чертой стала наследуемость с дизель-электрическими предшественниками.

Лодки носили скорее экспериментальный характер, часто предназначались для «боевой отработки» конструкторских идей.

2. Второе поколение стало прямым развитием предыдущего с минимальными изменениями и начинает свой отсчёт в 1967 году.

АПЛ поздней постройки получили «рыбообразную» геометрию корпуса (проект 705 «Лира» в СССР) и комплексные автоматизированные систем управления («Аккорд» на той же лодке), ставшим первым прообразом современного центра управлению сложных систем в виде единого пульта.


Атомная подводная лодка проекта 661 «Анчар»

Серьезной заявкой для АПЛ СССР стал родоначальник «охотников за авианосцами» К-162/222 «Золотая рыбка» проекта 661 «Анчар» с полностью титановым корпусом. Субмарина достигла до сих пор не побитый рекорд скорости в 44,74 узлов (80,4 км/ч).

3. Третье поколение появилось в начале восьмидесятых и характеризуется прежде всего существенно возросшим водоизмещением, повышением автономности, улучшением жизнеобитания команды, а так же унификацию субмарин и их классов.

Американские лодки типа «Огайо» и «Лос-Анджелес» получили реакторы, работающие без перезарядки до 11 лет и не требующие серьезного ремонта в течении всего жизненного цикла — до 30 лет.

Наиболее богатый период кораблестроения: большинство из лодок ещё в строю. Многие из них уникальны, например печально известный рекордсмен проекта 685 «Плавник» К-278 «Комсомолец» с двумя титановыми корпусами и глубиной погружения до 1000 метров.


Ракетонесущий крейсер «Огайо» ВМС США

4. Четвертое поколение на данный момент является наиболее современным, начиная свою историю в начале девяностых. В США представлено только многоцелевыми типами.

Эти аппараты объединяет применение водометных движителей («Сивулф», проект 955), звукопоглощающие покрытия нового типа, новые материалы (композит), реакторы длительного срока службы.

После ряда катастроф подводных лодок предыдущего поколения, проекты получили собственные автономные спасательные капсулы и полностью изолированный реактор.

Возросло и было унифицировано вооружение: так, американские лодки научились хранить до 50 крылатых ракет основных используемых ВМС США типов.

5. Перспективное пятое поколение существует только на бумаге, однако предполагается, что будет включать в себя преимущественно многоцелевые субмарины.

Основным изменением станет атомный реактор с запасом энергии на весь жизненный цикл подводной лодки (в США внедряется в лодках четвертого поколения), полностью композитный корпус, а так же унифицированное вооружение.

Одни и те же пусковые установки будут использовать как баллистические, так и крылатые тактические ракеты, а так же иное неядерное вооружение для выполнения широкого спектра задач.

Общее устройство современной АПЛ


Ракетонесущий атомный подводный крейсер проекта 941 «Акула» в разрезе

Среднестатистическую подводную лодку, бороздящую Мировой океан прямо сейчас, можно описать единой концептуальной схемой. Отдельные агрегаты и линии могут меняться, но сама идея остаётся неизменной с семидесятых годов.

Большинство российских субмарин используют два корпуса (отдельные капсулы в общем) — внутренний из мягкого и прочного титана и внешний из маломагнитной стали. Американские используют один многослойный корпус, разделенный переборками. Как и 50 лет назад.

Между корпусами (у АПЛ США — в общем объеме) расположены ёмкости для воды. При их заполнении лодка опускается, откачка поднимает судно на поверхность. Цистерны можно заполнять одновременно или по-очереди.

Кроме основных, есть так называемые дифферентные цистерны: их заполняют для выравнивания лодки после загрузки и при движении груза. Эта система работает все время, даже под водой при горизонтальном движении.


Многоцелевая АПЛ класса «Вирджиния» ВМС США

Существуют также лодки с корпусом смешанного типа (когда легкий корпус перекрывает основной лишь частично) и многокорпусные (несколько прочных корпусов внутри легкого).

Колоссальные АПЛ проекта 941 «Акула», созданные по принципу катамарана, несут внутри легкого корпуса находятся пять прочных корпусов, два из которых являются основными. Для изготовления прочных корпусов использовали титановые сплавы, а для легкого — стальной.

Переборки между отсеками рассчитаны на давление в 10 атмосфер и сообщаются люками, которые можно герметизировать, если это необходимо. Не все отечественные атомные субмарины имеют так много отсеков.

Для справки: многоцелевая АПЛ проекта 971, например, разделена на шесть отсеков, а новый ракетоносец проекта 955 — на восемь.

Отсеки атомной субмарины и их назначение


Многоцелевая атомная подводная лодка проекта 941 в разрезе

Традиционная компоновка включает от 5 до 8 отсеков (дублируются на лодках проекта 941) со своим назначением и определенной конфигурацией, вплоть до использованных материалов.

1. Первый отсек несет торпедные аппараты и сами торпеды на нескольких палубах, поэтому в зависимости от типа и степени автоматизации лодки может быть необитаем и находиться сразу за легким корпусом.

2. Второй отсек чаще всего используется для размещения радиооборудования: здесь находится центральный пульт управления, пульты гидроакустических систем, регуляторы микроклимата и навигационное спутниковое оборудование.

Именно на втором отсеке размещается рубка, используемая для размещения антенн, перископов. Её основная цель — наблюдение из подводного положения.

3. Третий отсек на современных российских подводных лодках проектов 949А и 955 используется в качестве радиосвязного. Многие ранние типы совмещают его с центральным отсеком управления.

4. Четвертый отсек (он же третий на ряде лодок 3–4 поколений) является жилым: тут размещены каюты экипажа, помещения отдыха, камбуз. В нём проводит время основная часть экипажа, не задействованная в работе на данный момент.

Советские и российские АПЛ между этим и последующим отсеком несет дополнительный отсеки для деконтаминации членов экипажа: очистке одежды членов команды, которые работали в отсеке с реакторами.


Ракетные шахты многоцелевых подводных лодок

5. Пятый (шестой на российских АПЛ) отсеки размещают силовую установку. В зависимости от типа реактора, дизель-генераторы могут находится с ним в одном помещении или в раздельной.

На субмаринах пятого поколения, а так же на американских АПЛ «Сивулф» используется герметичная капсула реактора, которая может полностью изолироваться от остальной лодки.

Самые современные субмарины имеют 7 и 8 отсек, где размещается центр управления реактором и турбинная установка с аккумуляторами. Такая компоновка позволяет исключить контакт с реактором.

Так же в последних отсеках может располагаться автономная капсула для спасения экипажа, созданная по типу спускаемого космического аппарата.

Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель


Базовый принцип работы атомного реактора

Главный агрегат, отличающий атомную от дизельной лодку — реактор. В зависимости от его типа, может варьироваться тип привода.

В типичном двигателе с ядерным реактором охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора, превращается в пар и вращает лопасти турбины.

Вал турбины подключается к валу электродвигателя через редуктор для более эффективного преобразования энергии в электрическую.

В свою очередь, вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Одновременно с этим часть электроэнергии запасается в бортовых аккумуляторах.


Рабочий отсек АПЛ

Переход энергии молекул пара в кинетическую энергию лопаток приводит к конденсации пара обратно в воду, которая вновь поступает в реактор.

На этом фоне интересно смотрится количество аварий АПЛ. Всего за историю атомного флота затонуло 8 субмарин: 4 советских, 2 российских, 2 американских. Только одна, USS Thresher (SSN-593) — из-за повреждения корпуса.

Печально известный «Курск» проекта 949А «Антей» стал наиболее известной катастрофой российского флота и едва ли не единственной аварией из-за вооружения. Прочие затонули из-за прямых или косвенных проблем с двигательной установкой.

Вооружение подводных лодок: ядерное и неядерное


Подводный запуск межконтинентальной баллистической ракеты Р-30 «Булава»

Первоначально атомные подводные лодки проектировались в качестве носителей стратегического ядерного вооружения: АПЛ должны были незаметно прорвать оборону вероятного противника и нанести неожиданный удар.

Баллистические ракеты АПЛ первого поколения несли моноблочную часть и не отличались большой дальностью и требовали надводный запуск на относительно спокойной воде (при отсутствии бокового ветра).

Лодки США несли по 16 носителей «Поларис» модификаций А1, А2, А3, «Посейдон» С3, «Трайдент 1» С4 с дальностью от 2200 км у А1 до 7400 км у С4. АПЛ Советского Союза несли по 3 ракеты Р-13, впоследствии замененными Р-21 с дальностью всего 650 км и 1420 км.


Пусковые установки баллистических ракет

Второе поколение АПЛ получило ракеты с разделяющейся головной частью (с 3 или с 7 блоками) количеством от 8 до 16 как в СССР, так и в США. Ранние советские ракеты этого поколения Р-29 получили дальность стрельбы 7800 км, более поздние экземпляры Р-29Р — 9000 км/6500 км (моноблок/разделяемая боеголовка).

Третье и четвертое поколение получило от 16 (проект 955) до 24 баллистических ракет (проект 941 «Акула», «Огайо») Р-29РМУ2 «Синева», Р-30 «Булава-30», UGM-133A «Трайдент II» с дальностью до 9–11 тыс. км.

Кроме баллистических ракет, ракетоносцы несут 4–6 торпедных аппаратов калибра 533 или 650 мм для самообороны и запуска специализированных средств: акустических буёв, мин, спецсредств.


Схема подводного запуска баллистической ракеты с подводной лодки типа «Огайо»

Неядерное (условно, многие управляемые боеприпасы имеют или имели разработанную ядерную боеголовку) вооружение атомных лодок с ранних этапов было представлено как торпедами средних и больших калибров, так и крылатыми ракетами.

«Аметист» и «Малахит» в шахтах стали первым оружием, запускаемым из-под воды. Сегодня их заменяют «Гарпун», «Томагавк» («Сифвулф») и «Калибр», «Оникс», «Циркон» (российские лодки проекта 855 «Ясень»).

Интересно: знаменитые российские низколетящие гиперзвуковые ракеты создавались именно для подводных лодок и сначала предназначались для уничтожения кораблей.


Запуск баллистической ракеты UGM-133 Trident-II

Начиная с четвертого поколения АПЛ-охотников оснастили универсальными пусковыми устройствами с барабанными «магазинами» для запуска торпед, крылатых ракет, а так же ракет класса «поверхность-поверхность».

Им на смену приходят унифицированные варианты для упрощенного запуска из торпедных аппаратов: двигатель ракеты при таком запуске включается далеко от АПЛ, а первая стадия запуска происходит как у торпеды, сжатым воздухом.

Эксплуатация атомных подводных лодок


Сухой док для обслуживания АПЛ типа «Огайо»

Появление атомных подводных заставило пересмотреть применение и ремонт подобных типов судов: их подводная часть имеет неподходящие для обычных портов габариты, а реакторы опасны.

Учитывая, что большая часть задач связана с длительным скрытным применением у берегов вероятного противника, поход так же должен начинаться в потайном месте — иначе лодки можно будет отслеживать с начала пути.

Аналогичные рассуждения, необходимость защиты АПЛ от вероятного удара противника, необходимость защиты окружения от возможных проблем с реакторами/вооружением привели к появлению уникальных закрытых баз размером с мегаполис.


Схема подземной базы атомных подводных лодок в Балаклавской бухте

Первая появилась в Балаклавской бухте, заняв собой колоссальную площадь отдельными помещениями, связанными туннелями и каналами: ракеты отдельно, боеголовки отдельно, лодки отдельно.

Ремонт — так же в спецзонах, так как 1–3 поколению лодок требовалась не только замена топлива, но и замена активной зоны реактора. Аналогичные комплексы были созданы уже над водой для каждого океанского флота: в Северодвинске, в Заполярье, в бухте Чажма.

АПЛ США повезло больше: военно-морская база Кингс-Бей вместила всю необходимую инфраструктуру, включая учебные центры и заводы по модернизации в одном месте с погодными условиями, исключающими проблемы во время ремонтных или погрузочных работ.


Российская база подводных лодок

Специализированные базы используются только для длительных остановок АПЛ, ремонта и погрузки ядерных материалов. Все остальное время атомные субмарины снабжаются с плавучих причалов (СССР), судов снабжения (Россия и США), оставаясь почти все время в открытом море.

Современные многоцелевые лодки часто используют обычные военно-морские порты для короткого базирования, уходя на специальные базы только при необходимости — вероятность радиоактивного загрязнения среды при их эксплуатации низкая.

От чего зависит автономность АПЛ?


Атомные подводные лодки и суда сопровождения

Появление ядерного реактора и увеличение объема корпуса подводных лодок после появления атомного реактора на борту позволили кратно в сравнении с дизельными субмаринами увеличить полезную нагрузку.

Вместе с тем — и длительность автономного хода. Считается, что продолжительность автономного похода, как называется одиночное плавание АПЛ, может достигать полугода: примерно столько занимает задача патрулирования берегов вероятного противника.

Причем многие из современных АПЛ до половины этого времени способны находиться под водой. И весь срок не пополнять запасы ни с берега, ни с судов поддержки.

Тем не менее, средний срок похода подводного флота всех государств составляет около 2–3 месяцев.


В зоне отдыха АПЛ проекта 941

Из них не менее четверти времени проходит в надводном состоянии, и не менее половины — в прямой близости с кораблями огневой поддержки и судами снабжения, которые объединяются с АПЛ в единую боевую (патрульную/учебную) группу.

Срок похода ограничивается исходя из опыта эксплуатации, на котором основан запас питания, фильтров для получения пресной воды и чистого воздуха.

Дело в том, что основной сдерживающий фактор длительных автономных походов АПЛ — психологический. Человеку слишком тяжело долгое время находится в замкнутом пространстве узким коллективом.

Кроме того, плавание атомной субмарины требует постоянного контроля и множество типовых работ, расслабляться некогда. В противном случае существовали бы суда, годами находящиеся под водой.

Что ждёт атомные подводные лодки в будущем?


Атомная исследовательская субмарина «Лошарик»

Самые современные российские подводные лодки проекта «Хаски» ещё только проектируются, но уже сейчас понятно, что они наследуют многие из идей, реализованных в судах четвертого поколения, эксплуатирующихся США:

  • модульный реактор, выполненный в отдельном отсеке, не требующим обслуживания;
  • ёмкость топливных элементов на 20–30 лет, то есть на всю эксплуатацию;
  • автономную спасательную капсулу для всех членов экипажа.

Вероятно, организация пространства таких лодок будет создаваться с оглядкой на проект «Лошарик»: уникальную АПЛ для исследования океанского дна, чей корпус состоит из отдельных шарообразных модулей, из-за чего навевает ассоциации с одноименным советским фильмом.


Отсек АПЛ проекта 941 «Акула»

Уже сегодня понятно, что дублирование реакторных систем останется, а основным движителем станет водомёт, управляемый вторичным электрическим двигателем во время основной работы, и напрямую реакторной турбиной — на скоростном марше.

Стоит ожидать и полностью автоматизированных систем управления, которые позволят сконцентрировать экипаж в одном наиболее защищенном модуле без необходимости постоянных переходов в рабочие отсеки.

Как будет выглядеть такая атомная подводная лодка? Увидим. Но у неё будет очень много общего с космическими кораблями, которые полетят спустя какое-то время.

P.S. Мировой Океан — не менее опасный мир, чем космос. И только атомные подводные лодки приближают нас к грядущим открытиям.

©  iphones.ru