Как зародилась жизнь: гипотеза Аби Лёва

Ингредиенты

«Стандартная космологическая модель решительно не допускает столь раннего возникновения жизни, — говорит Ави Лёб. — Первые звезды в доступной для наблюдения области космоса вспыхнули позже, когда возраст Вселенной составлял около 30 млн лет. Эти звезды наработали углерод, азот, кислород, кремний и другие элементы тяжелее гелия, которые могли стать частью первых твердых планет земного типа, сформировавшихся вокруг звезд второго поколения. Однако возможно и гораздо более ранее возникновение звезд первого поколения из облаков молекулярного водорода и гелия, которые сгустились в скоплениях темной материи — возраст Вселенной в это время составлял около 15 млн лет. Правда, считается, что вероятность появления таких скоплений была очень мала».

  • Наука

    Млечный Путь оказался в два раза шире, чем считали астрономы

  • Наука

    Что у бога под одеждой, или NASA Juno: что мы знаем о Юпитере

Однако, как считает профессор Лёб, данные наблюдательной астрономии позволяют допустить, что во Вселенной могли появиться отдельные области, где первые звезды вспыхнули и взорвались много раньше, чем предписывает Стандартная модель. Там скапливались продукты этих взрывов, ускорившие охлаждение облаков молекулярного водорода и тем самым стимулировавшие появление звезд второго поколения. Не исключено, что часть таких звезд могла обзавестись каменистыми планетами.

Ави Лёб, профессор астрофизики Гарвардского университета: «Для возникновения жизни мало одного тепла, нужна еще подходящая химия и геохимия. Но на молодых каменистых планетах могло хватать и воды, и веществ, нужных для синтеза сложных органических макромолекул. А отсюда недалеко и до настоящей жизни. Если такой сценарий и не слишком вероятен, он все-таки не невозможен. Однако проверить эту гипотезу в обозримом будущем практически невозможно. Даже если во Вселенной где-то и есть планеты сверхраннего рождения, то в очень малом количестве. Непонятно, как их обнаружить, и еще более непонятно, как исследовать на следы биогенеза».

В тепле и комфорте

Но одних только элементов тяжелее гелия недостаточно для возникновения жизни — требуются еще и комфортные условия. Земная жизнь, например, полностью зависит от солнечной энергии. В принципе, первые организмы могли возникнуть с помощью внутреннего тепла нашей планеты, но без солнечного нагрева они бы не достигли поверхности. А вот через 15 млн лет после Большого взрыва это ограничение не действовало. Температура космического реликтового излучения была в сто с лишним раз выше, чем нынешние 2,7 К. Сейчас максимум этого излучения приходится на длину волны 1,9 мм, потому его и называют микроволновым. А тогда оно было инфракрасным и даже без участия звездного света могло нагреть поверхность планеты до вполне комфортной для жизни температуры (0−30°С). Эти планеты (если они существовали) могли даже обращаться вдали от своих звезд.

Недолгая жизнь

Впрочем, у сверхранней жизни практически не было шансов сохраниться надолго, не говоря уже о серьезной эволюции. Реликтовое излучение быстро остывало по мере расширения Вселенной, и продолжительность благоприятного для жизни нагрева поверхности планет не превышала нескольких миллионов лет. К тому же через 30−40 млн лет после Большого взрыва началось массовое рождение очень горячих и ярких звезд первого поколения, заливавших космическое пространство рентгеном и жестким ультрафиолетом. Поверхность любой планеты в таких условиях была обречена на полную стерилизацию.

Принято считать, что жизнь, которую мы знаем, не может зародиться ни в звездной атмосфере, ни на газовом гиганте, подобном Юпитеру, ни, тем более, в космической пустоте. Для возникновения жизни требуются небесные тела с богатым химическим составом, с твердой поверхностью, с воздушным бассейном и с резервуарами жидкой воды. Считается, что такие планеты могут формироваться лишь вблизи звезд второго и третьего поколений, которые начали загораться спустя сотни миллионов лет после Большого взрыва.

Антропный принцип

Гипотезу Ави Лёба можно использовать для уточнения так называемого антропного принципа. В 1987 году лауреат Нобелевской премии по физике Стивен Вайнберг оценил диапазон значений антигравитационной энергии вакуума (теперь мы знаем ее как темную энергию), совместимых с возможностью зарождения жизни. Эта энергия хотя и очень мала, но приводит к ускоряющемуся расширению пространства, и потому препятствует образованию галактик, звезд и планет. Из этого вроде бы следует, что наша Вселенная прямо-таки приспособлена для возникновения жизни, — именно в этом и заключается антропный принцип, ведь если бы величина темной энергии была всего в сто раз больше, то во Вселенной не было бы ни звезд, ни галактик.

Однако из гипотезы Лёба следует, что жизнь имеет шанс возникнуть в условиях, когда плотность барионного вещества во Вселенной была в миллион раз больше, чем в нашу эпоху. Это означает, что жизнь может зародиться и в том случае, если космологическая постоянная не в сто, а в миллион раз превышает ее реальное значение! Такой вывод не отменяет антропный принцип, но значительно уменьшает его убедительность.

Статья «Жизнь у истоков мироздания» опубликована в журнале «Популярная механика» (№3, Март 2014).

©  Популярная Механика