Анализ редкого метеорита пролил неожиданный свет на происхождение Марса
Новый анализ метеорита Шассиньи, упавшего на Землю в 1815 году, показывает, что способ, которым Марс получал свои летучие газы, такие как углерод, кислород, водород, азот и инертные газы, противоречит нашим нынешним представлениям о формировании планет.
Планеты рождаются, согласно современным моделям, из остатков звездного вещества. Звезды образуются из небулярного облака пыли и газа, когда плотный комок материи разрушается под действием силы тяжести. Вращаясь, он собирает на себя все больше вещества из окружающего его облака, чтобы расти.
В результате образуется диск, вращающийся вокруг новой звезды. Внутри этого диска пыль и газ начинают слипаться в процессе, в результате которого растет планета-ребенок. Мы видели, как другие детские планетные системы формировались таким образом, и данные в нашей Солнечной системе свидетельствуют о том, что и она появилась схожим образом около 4,6 миллиарда лет назад.
Но как и когда определенные элементы были включены в состав планет? Эти данные крайне проблематично собрать воедино.
Согласно современным моделям, летучие газы поглощаются расплавленным, образуя планету из солнечной туманности. Поскольку на этой стадии планета очень горячая и мягкая, эти летучие вещества всасываются в глобальный магматический океан, который является формирующейся планетой, а затем частично выделяются в атмосферу по мере остывания мантии.
Позже летучие вещества доставляются с помощью бомбардировки планеты метеоритами. Вещества, связанные с углеродистыми метеоритами (называемыми хондритами), высвобождаются, когда те распадаются при попадании на планету. Таким образом, внутренняя часть планеты должна отражать состав солнечной туманности, а ее атмосфера должна отражать в основном «летучий» вклад метеоритов.
Мы можем определить разницу между этими двумя источниками, взглянув на соотношение изотопов инертных газов, особенно криптона.
И, поскольку Марс сформировался и затвердел относительно быстро примерно за 4 миллиона лет, по сравнению со 100 миллионами лет для Земли, это хороший показатель для тех самых ранних стадий процесса формирования планет. Разумеется, только в том случае, если мы сможем получить доступ к необходимой нам информации — и именно поэтому метеорит Шассиньи стал настоящим подарком из космоса.
Его состав благородного газа отличается от состава марсианской атмосферы, что позволяет предположить, что этот кусок породы оторвался от мантии (и был выброшен в космос, упав в итоге на Землю), так что его состав отражает состав планетарных недр и, следовательно, солнечной туманности.
Однако криптон довольно сложно измерить, поэтому точное соотношение изотопов ускользает от измерения. Однако Перон и ее коллега, коллега-геохимик Суджой Мухопадхай из Калифорнийского университета в Дэвисе, применили новый метод, используя Лабораторию благородных газов Калифорнийского университета в Дэвисе, чтобы выполнить новое точное измерение криптона в метеорите Шассиньи.
Новое фото Марса: око Красной планеты смотрит на звезды
Итоги работы были крайне. странные. Соотношение изотопов криптона в метеорите ближе к соотношению, связанному с хондритами, причем ближе существенно. «Марсианский внутренний состав криптона почти полностью хондритовый, но атмосфера солнечная», — заявил Перон. «Мы в этом уверены».
Это говорит о том, что метеориты доставляли летучие вещества на Марс намного раньше, чем считали ученые, до того, как солнечная туманность была рассеяна солнечным излучением.
Таким образом, порядок событий таков: Марс приобрел атмосферу из солнечной туманности после того, как его глобальный магматический океан остыл; в противном случае хондритные газы и газы туманностей были бы гораздо более перемешаны, чем наблюдала команда.
Однако это таит в себе еще одну загадку. Когда солнечное излучение в конце концов сожгло остатки туманности, оно должно было сжечь и туманную атмосферу Марса. Это означает, что присутствующий позже атмосферный криптон должен был где-то сохраниться. Команда предположила, что это «хранилище» суть полярные ледяные шапки планеты.