В темной-темной комнате… Разбираем самые страшные задания киберучений CyberCamp 2024. Часть II

aba676fa1c61f0db8b8ebe89ed5cdec3.png

В первой части нашего материала мы представили алгоритмы решения двух страшно интересных заданий. С наступлением темноты разбираем еще три жуткие задачи.

«В темноте», «Профиль безопасности», «СОКобан», так же как «Копай глубже» и «Пропавший мастер», могли бы стать отличными названиями фильмов ужасов, но команда главного онлайн-кэмпа по практической кибербезопасности CyberCamp 2024 была быстрее и использовала их для своих заданий. На этот раз пытаемся выяснить причину отключения света в целом районе, сконфигурировать профиль защиты IPS, разгрести завалы из событий в SIEM и прочее.

«В темноте»

Задание от «АйТи Бастион»

Количество баллов: 220

Фракция: Blue Team

Время на выполнение: 80 минут

Что случилось?

d7b3ce40f29e8f03c187a28fd9cbde62.png

Что делать?

Разберитесь в причинах произошедшего инцидента и ответьте на вопросы, используя доступные средства защиты информации и накопленные в них данные:.
• СКДПУ НТ «Шлюз доступа» и «Модуль поведенческого анализа», обеспечивающие контроль удаленного доступа к АРМ Оператора АСУТП и выявление аномалий;
• Kaspersky Industrial CyberSecurity for Networks (KICS for Networks), обеспечивающее фиксацию подозрительного поведения в промышленной сети.

Действуем!

  1. Определим IP-адрес устройства злоумышленника, с которого было выполнено несанкционированное подключение к АРМ Оператора АСУТП.

    Необходимо обратить внимание на инциденты, зарегистрированные в СКДПУ НТ «Модуль поведенческого анализа». В перечне инцидентов присутствовало большое количество попыток подключения к АРМ Оператора АСУТП напрямую (Прямой логин / Direct_Login), в обход СКДПУ НТ «Шлюз доступа»:

    78329315d491b60e56c1f0e5b668e2d1.png

    При детальном изучении зарегистрированных инцидентов можно обнаружить IP-адрес устройства злоумышленника, с которого выполнялись подключения к АРМ Оператора АСУТП напрямую. А поле dst_ip_port указывало на, то что злоумышленник использовал для подключения к АРМ Оператора протокол удаленного доступа (RDP):

    16eecc65cc06b9eace9e2f369c97d97a.png

    В этом также можно было убедиться, изучив сработки IDS-правил в KICS for Networks:

    2efdc71c2dfac2527b03e304c29676a3.png

    Если выполнить фильтрацию событий по подозрительному IP-адресу (в нашем случае это 10.31.117.139), мы также найдем признаки появления в промышленной сети нового устройства и последовавшего за ним сканирования промышленной сети:

    055b7e8a6b86c848cba0bab2fc6b2114.png

    Таким образом, мы убедились в том, что источником нелегитимной активности в промышленной сети является устройство с IP-адресом 10.31.117.139.

  2. Укажем точное время появления устройства злоумышленника в промышленной сети.

    Перейдем в KICS for Networks в раздел «Активы» и найдем там устройство с обнаруженным ранее IP-адресом злоумышленника. При детальном изучении карточки актива видны данные о первом его появлении в промышленной сети (26.09.2024 11:15:56).

    fa4d2790c4c5017edb1e5bef23fd3b74.png
  3. Определим метод получения злоумышленником пароля от АРМ Оператора.

    Можно пойти двумя путями.

    Первый — с использованием СКДПУ НТ «Модуль поведенческого анализа». Ранее при нахождении ответа на первый вопрос среди зарегистрированных инцидентов попыток подключения к АРМ Оператора АСУТП в обход СКДПУ НТ «Шлюз доступа» можно было обнаружить инцидент (Инцидент DL-1000197) по сработавшему правилу Signs of a brute-force password attack on RDP. 

    5869eacaf5f92a32576c22d2e1d68e5e.png

    Второй — с использованием KICS for Networks. Изучив в KICS for Networks активность, связанную с IP-адресом устройства злоумышленника, можно обнаружить зарегистрированное событие Rule from the bruteforce (system rule set) was triggered для запросов в сторону АРМ Оператора (SCADA Redkit Server).

    74011184bb7e37095c712f54d5f383eb.png

    Оба пути приводят к верному ответу — злоумышленник использовал BruteForce.

  4. Определим, по каким промышленным протоколам осуществляется обмен данными между АРМ Оператора и PLC.

    В KICS for Networks необходимо перейти в раздел «Карта сетевых взаимодействий» и ознакомиться с информацией об используемых протоколах взаимодействия между АРМ Оператора (SCADA Redkit Server) и PLC (SIMATIC S7–1200):

    9452be8e361c2890883ae6287bbb9213.png

    Верный ответ: Modbus TCP; Siemens S7common-plus; PROFINET.

  5. В результате атаки злоумышленник сменил пароль доступа к АРМ Оператора для затруднения восстановления. Определим точное время, когда удалось сбросить пароль и вернуть контроль над АРМ Оператора с помощью СКДПУ.

    Изучим историю смены пароля учетной записи оператора АСУТП в СКДПУ НТ «Шлюз доступа» и найдем событие легитимного сброса пароля от конечной системы. Точное время: 26.09.2024 11:31:10.

    7440b2c78ec48ba6ea03910584fa8d7a.png
  6. Определим тип злонамеренного вмешательства в технологический процесс.

    Поскольку злоумышленнику удалось добраться до АРМ Оператора, минуя PAM, для поиска ответа будем пользоваться KICS for Networks. На СКДПУ мы видим, что в 11:20 нет активных сеансов легитимного управления PLC, однако в KICS зафиксирована передача команд от АРМ Оператора в сторону контроллера:

    b5aa419f82e95929413d142f3f13f0a0.png

    Последствия внесенных злоумышленником изменений в конфигурацию PLC команды могли заметить в СКДПУ НТ «Шлюз доступа» в записи легитимной сессии удаленного доступа к АРМ Оператора:

    a39cbe47d1e98a8edaf5f12e6a5f1c7d.png
  7. Определим точное время прогрузки PLC.

    Под прогрузкой PLC понимается время заливки в контроллер новой программы управления. Такое событие можно найти в KICS for Networks среди зарегистрированных: Suspicious active (MITRE: Program Upload). Время регистрации (11:19:31) найденного события и есть верный ответ.

    ef385247586591e8f869adc43601e2e7.png

    8. Определим, какой блок c данными PLC был изменен.

    Следом за загрузкой новой программы управления в PLC мы видим алерт об изменении Memory Block: INSERT NEW PLC MEMORY Block command detected. Событие высокого уровня критичности, заглянем внутрь. Здесь мы и находим ответ на заключительный вопрос сценария:

Что это было?

В результате расследования инцидента мы восстановили полную цепочку атаки на промышленную сеть. Злоумышленник, проникнув на территорию объекта поставщика электроэнергии, подключился к промышленной сети для сканирования ее на наличие активных устройств. Обнаружив активное устройство (АРМ Оператора) с открытым портом удаленного доступа (RDP), злоумышленник методом brute force выполнил подбор пароля учетной записи для доступа к АРМ Оператора. Получив удаленный доступ к АРМ Оператора и проанализировав конфигурацию PLC, злоумышленник внес в нее деструктивные изменения и загрузил в контроллер. Злоумышленник сменил пароль от учетной записи оператора с целью затруднения устранения последствий атаки.

Максимальное количество баллов за это задание получили четыре команды: EXE1sior из студенческой лиги и «ГИД», Dream_SOC, FYI — из корпоративной.

«Профиль безопасности»

Задание от «Код Безопасности»

Количество баллов: 220

Фракция: Yellow Team

Время на выполнение: 60 минут

Что случилось?

d055e89cbafc6b874f69842d0a09216d.png

Что делать?

Изучите «модель угроз» для защищаемой инфраструктуры и настройте релевантный ей профиль защиты детектора атак «Континент 4» на своем шлюзе безопасности. В распоряжении каждой команды имеется выделенный экземпляр детектора атак.

Действуем!

  1. Перед настройкой самого профиля СОВ приведем в порядок переменные, используемые при работе сигнатур.

    Большинство команд правильно указали защищаемую сеть HOME_NET, за что получили 10 баллов. Однако здесь была возможность заработать дополнительные 10 баллов, если заметить, что в HTTP-портах пропущен 80-й, и вернуть его на законное место (Переменная HTTP_PORTS).

    4c62838662259aa81e2666e9b8b58b93.png
  2. Изучим описание атак, от которых необходимо выстроить защиту путем выбора корректных сигнатур.

    Участники удивлялись, зачем выбирать только 20 сигнатур, ведь можно выбрать все. Однако суть задания была именно в осознанном выборе правил в соответствии с защищаемой инфраструктурой — зачастую такой подход позволяет снизить нагрузку на устройство за счет освобождения его оперативной памяти от лишних сигнатур.

    Инфраструктурная часть «Модели угроз» выглядела так:  

    91ef5463fe5189dd3324977515cc86ad.png

    В первом блоке, касающемся защиты инфраструктурных сервисов, речь идет о нескольких популярных уязвимостях высокого уровня опасности.

    Уязвимость в RDS под названием BlueKeep, подробнее о которой можно почитать здесь. Выбираем соответствующую ей сигнатуру в базе решающих правил (БРП):

    374081d2ac788a7a298e1f0532bcf261.png

    RCE-уязвимость в Exchange Control Panel. Найти ее несложно, ее идентификатор CVE-2020–0688, по нему и добавляем сигнатуру из БРП:

    a8da28803682766333e91a033dc04cac.png

    Уязвимость в популярном плагине для WordPress под названием Bricks Builder. Уязвимость была опубликована 16.02.2024 и актуальна до версии 1.9.6. Найдем нужные сигнатуры по CVE и добавим их в наш профиль защиты:

    91becdd6ad3686594ed097d2a9414b0d.png

    Далее следует дополнительная часть «модели угроз»:

    a9b0d6068b17dbef4319b29b1018d235.png
  3. Распознаем вредоносы и добавим правила их блокировки в создаваемый профиль.

    Под «издателем RE» скрыта серия компьютерных игр Resident Evil, издателем которой является японская компания Capcom. Ее активы были зашифрованы вредоносом Ragnar Locker, добавляем его в профиль:

    f628af780e14c11252d76cd11f245350.png

    Второй тип Ransomware найти несложно — на вход выдавался хэш. Поиск по нему в общедоступных базах, например VT, выводит на шифровальщик Exorcist. Ищем и добавляем соответствующие сигнатуры:

    3c2b9bcc5e0c724d49cfb05dadb06ae2.png

    Необходимо распознать атаку, совершенную в октябре 2023 года на компанию Boeing. Злоумышленники использовали LockBit и требовали выкуп в размере $200 млн. Выберем соответствующие сигнатуры:

    f79402751f9de0333a466f9638f224a5.png

    У нас остались два пункта «модели угроз», перейдем к ним. Под популярным лоадером, использующим автоматизатор Autoit для выполнения зловредных действий, скрывается ВПО Dark Gate. Почитать подробный его разбор можно в этой статье. Для выявления Dark Gate в базе имеется довольно много сигнатур, нас интересует лишь одна (о чем указано в задании) — она выделена на скриншоте:

    621bd414077611b2806d4b4466edc754.png
  4. В заключительном пункте обнаружим отсылку к другому заданию CyberCamp 2024 — «Игра TI-аналитика». В нем плотно изучали стилер Lumma, собирая о нем информацию во всех доступных источниках. Здесь можно получить дополнительные баллы, если ранее удавалось верно определить актуальный для зловреда С2.

    Определялся он следующим образом.

    • По хэшу выходим на tria.ge, где среди различных индикаторов находим ссылку на профиль steam, являющийся оригинальным способом передачи вредоносом информации о текущем активном домене:

    04c275634fdb8bb97493ffa4de6f2a61.png

    Имя домена постоянно меняется и в текущий момент выглядит так:

    3912dec37549c5327ebab2092e190c91.png

    • Значение кодируется алгоритмом Цезаря, что по итогам обратного преобразования дает нам значение:

    1e3d5ee94cef83435a1a8831e1790a57.png

    Далее на основе полученного домена создаем собственную сигнатуру. Делается это в два шага:

    — находим имеющуюся в базе сигнатуру для детектирования обращения к C2 Lumma Stealer, например эту:

    7dcd618a1ca3b0ca4c6b3ac4ac09396e.png

    — создаем на ее основе собственную, меняя значение content на добытое ранее:

    2fece5e84af82f332482e610694e6135.png

    Добавляем ее в профиль блокировки, за что получаем 20 дополнительных баллов.

Что это было?

Таким образом, мы изучили «модель угроз» для защищаемой инфраструктуры и настроили релевантный ей профиль защиты детектора атак «Континент 4» на своем шлюзе безопасности.

Результирующий профиль безопасности выглядит так:

51b2c21bb6048af83f0cda4d874085ef.png

Он включает 19 сигнатур — 18 штук по 10 баллов за каждую и одну кастомную за 20 баллов. Один слот в профиле оставался резервным, на случай, если команда случайно «зацепит» лишнюю сигнатуру.

По условиям задания, выбранные в профиле сигнатуры обязательно должны были быть переведены в режим «Блокировать» (см. рисунок выше), иначе весь труд умножался на ноль. Командам, успешно собравшим профиль защиты из необходимых сигнатур, но не сменившим действие по ним на блокировку, начисляли 0 баллов, поскольку такой профиль безопасности оказывался бесполезным и от атак не защищал. Важно отметить, что далеко не все команды были на входе знакомы с интерфейсом решения, однако, проявив пытливость, смогли легко найти документацию и видеогайд по настройке детектора атак «Континент 4» и получить высокий результат.

В этом задании максимальное количество баллов не набрал никто, но ближе всех были команды из корпоративной лиги CITRUS и «дядя_Серёжа» — у них по 200 баллов из 220 возможных.

«СОКобан»

Задание от R-Vision

Количество баллов: 240

Фракция: Yellow Team

Время на выполнение: 60 мин

Что случилось?

29edf84c07afab3ff85a7b21a6f673b1.png

Что делать?

Помните игру Sokoban, двухмерную компьютерную игру-головоломку, в которой игроку необходимо расставить ящики по обозначенным местам лабиринта? Это аналогичное задание — ононацелено на получение инженерного опыта настройки средства защиты. Нужно разгрести завалы из событий в R-Vision SIEM, построить свой конвейер обработки данных и навести порядок в системе.

Конвейер обработки событий

Конвейер обработки событий — компонент коллектора, представляющий собой упорядоченную последовательность взаимосвязанных элементов, выполняющих различные этапы обработки событий. В процессе работы конвейера происходит прием событий, их нормализация, перенаправление, обогащение данными, фильтрация, агрегация, корреляционный анализ и отправка как отдельных, так и сгруппированных или коррелированных событий для хранения и/или передачи во внешние системы.

Действуем!

Чтобы SIEM-система могла эффективно собирать, анализировать и интерпретировать события из различных источников, а также для того, чтобы эта информация была представлена в стандартизированном и понятном формате, существует важный процесс — нормализация. Нормализация приводит данные, называемые событиями, из различных источников к единой структуре путем извлечения (парсинг) и распределения важных значений атрибутов события в унифицированный набор полей, что позволяет SIEM-системе и ее пользователям работать с ними независимо от их источника исходных данных.

Парсинг

Парсинг (или синтаксический разбор) — это процесс извлечения ключевой информации (полей) из сырых логов, которые поступают в SIEM-систему. Логи могут поступать из различных источников: сетевых устройств (например, межсетевых экранов, маршрутизаторов), операционных систем, серверов, приложений, систем безопасности и т.д. Форматы логов могут сильно отличаться в зависимости от производителя и типа устройства, поэтому SIEM-системе необходимо «разобрать» эти логи, чтобы извлечь из них значимую информацию.

Нормализация

Нормализация — это процесс приведения данных к единому стандарту или формату, который используется SIEM-системой для обработки и анализа. Поскольку логи могут поступать из разных источников и иметь различные форматы, нормализация помогает унифицировать информацию и сделать ее пригодной для сопоставления и корреляции.

После того как данные были распарсены, их необходимо нормализовать, чтобы привести к общему стандарту. Это важно, потому что разные устройства могут по-разному называть одни и те же параметры.

Специфика внедрения SIEM-решений такова, что «из коробки» не все события от поддерживаемых источников хорошо парсятся и нормализуются, а для неподдерживаемых решений нужно писать свой пользовательский парсер.

В задании в R-Vision SIEM поступают события от пяти источников: VMware vCenter, Cisco ASA, Checkpoint, PTAF, Confluence. Часть событий некорректно нормализовались после базового подключения источников. Приведем несколько примеров некорректной работы с событиями.

В событиях от VMware vCenter нормализовались не все значения. Нужно было достать недостающие атрибуты: пользователя в поле suser, домен в поле sntdom, время в поле rt в формате »%Y --%m dT%H:%M:%S%, адрес устройства в поле shost. В некоторых событиях от Cisco ASA не хватало нормализации полей, нужно было добавить пользователя в поле suser, IP-адрес в поле src и преобразовать его к типу IPv6. В нормализованном событии от PTAF есть поле deviceProcessName, которое содержит лишнюю информацию:» Send to syslog, Block, Log to db ». Нужно оставить в deviceProcessName только второе значение после запятой, исходную строку нужно разместить в поле cs5, а также заполнить поле cs5Label=«Actions».

Отличительная особенность решения в том, что оно использует графический конструктор, который систематизирует поступившую информацию и направляет ее на хранение или дальнейший анализ. Совокупность визуализации и языка VRL (Vector Remap Language — это язык на основе выражений, разработанный для безопасной и эффективной работы с данными наблюдения, такими как журналы и метрики) дает возможность легко обрабатывать события и управлять ими в зависимости от решаемых задач.

В этом конструкторе нужно было построить цепочку передачи событий от источника данных в область их хранения, добавить фильтры для каждого источника и VRL-трансформацию. Фильтр на входе принимает событие, проверяет его по условию фильтрации и направляет на выход только в том случае, если условие выполняется. В противном случае событие отсеивается и не участвует в дальнейшей обработке, что позволяет оптимизировать утилизацию аппаратных ресурсов, например хранилища событий. VRL-трансформация на входе принимает события и проводит их преобразование, на выходе выдает преобразованные события.

40c49feca1799eda42a85b337d61564a.png

VRL-трансформация позволяет задать простые правила преобразования событий на языке VRL без предварительного создания правил нормализации и привязки к ним. VRL-трансформация удобна в тех случаях, когда требуется провести несложные модификации в структуре событий: например, использовать одну или несколько функций для упрощения дальнейшей работы с событиями или добавить/изменить/удалить какое-нибудь поле в структуре событий.

На рисунке ниже видно, как просто настроить разбиение события на несколько и их размещение в нужные поля. При этом не требуется корректировка самих файлов нормализации:

3da08903bb8fddb5d13f49b9c4e257cc.png

С помощью функционала VRL-песочница можно в несколько кликов проверить созданный код на реальных данных, это позволит понять, насколько корректно был разработан код для нормализации, и применять уже гарантированно корректный:

8d16d3fc87eff46997e382ba4c73b60c.png

После произведенных настроек события корректно нормализуются:

11147f006855234adb61f945b5569a09.png

Что это было?

В результате выполнения задания мы повысили информативность событий, поступающих в SIEM. В реальной жизни это позволит сократить время поиска необходимых событий и упростит создание правил корреляции для своевременного выявления инцидентов.

Правила корреляции

Правила корреляции — это наборы условий и логик, которые позволяют анализировать события из множества источников и выявлять потенциальные угрозы безопасности на основе взаимосвязи этих событий.

Команда K0TN, которая заняла второе место в студенческой лиге на CyberCamp 2024,  полностью выполнила это задание, заработав 240 баллов.

© Habrahabr.ru