Учёные разобрались в механизме взаимодействия сверхпроводимости и магнетизма

6f432e50a363b4d754d8a3954096c14f

Коллектив учёных МФТИ, НИТУ МИСИС и ВНИИА им Н.Л. Духова разобрался в механизме взаимодействия сверхпроводимости и магнетизма при высоких частотах. Исследование провели на тонкоплёночных гетероструктурах, изготовленных на кристалле кремния. Это открытие может найти применение в криогенной СВЧ-электронике. Работа реализована при поддержке Российского научного фонда. Научная статья опубликована в журнале Physical Review Applied.

Магноника, которая в будущем может стать альтернативой привычной кремниевой волновой электронике, изучает возможность передачи и обработки информации с помощью спиновых волн в магнитоупорядоченных веществах: ферромагнетиках, антиферромагнетиках и ферримагнетиках. В магнонике главную роль играют спиновые волны, или магноны, — гармонические колебания ориентации магнитного момента. В ферромагнетике магнитные моменты электронов, то есть их спины, упорядочены, а возникающие в этом упорядочении волны называются «спиновыми волнами».

У спиновых волн, возникающих в магнитоупорядоченных веществах, есть ряд преимуществ по сравнению с электромагнитными волнами, которые также используются в электронике. Спиновые волны могут управляться внешним магнитным полем, при этом длина электромагнитной волны сверхвысокочастотного диапазона (СВЧ-волны) — порядка сантиметра, тогда как для спиновых волн того же СВЧ-диапазона она составит микрометры. Поэтому на основе спиновых волн можно сделать очень компактные и перестраиваемые микроустройства для работы с СВЧ-сигналами.
Учёные МФТИ совместно с коллегами из Университета МИСИС и ВНИИА разобрались в магнитодинамических явлениях тонкоплёночных структур «сверхпроводник — ферромагнетик — сверхпроводник». Ранее исследователи обнаружили, что при наличии сверхпроводящих слоёв на обеих границах раздела «сверхпроводник — ферромагнетик» возникает массивный сдвиг ферромагнитного резонанса в сторону высоких частот. До сих пор было неизвестно, с чем это связано.

«Среди магнитных материалов не существует таких, у которых в нулевом поле резонансная частота оставалась бы крайне высокой — 10–15 ГГц. Но у исследованного материала такой эффект наблюдался. Оказалось, что динамика магнитного момента на интерфейсах «сверхпроводник — ферромагнетик» начинает «цепляться» за сверхпроводящие токи, так что эти токи начинают макроскопически циркулировать. Такое простое явление и приводит к тому, что радикально меняются частоты резонанса. Интереса явлению добавляет тот факт, что сверхпроводимость и магнетизм являются антагонистами: они обычно не любят взаимодействовать, то есть ухудшают свойства друг друга, а в исследованных образцах свойства наоборот улучшились», — рассказал Игорь Головчанский, первый автор исследования, ведущий научный сотрудник Центра перспективных методов мезофизики и нанотехнологий МФТИ и заведующий лабораторией криоэлектронных систем НИТУ МИСИС.

Физики сделали множество образцов с разными толщинами и свойствами и провели комплекс исследований в широком диапазоне температур и магнитных полей, накопив большой объём данных. Образцы, производимые с помощью тонкоплёночных технологий, представляли собой планарные микроструктуры ферромагнитного пермаллоя (Py) помещённые между тонкими плёнками ниобия (Nb). На подложку с помощью технологии магнитронного напыления наносились тонкие слои толщиной порядка десятка нанометров. После этого при помощи литографии образцы структурировались: происходили засветка шаблона и плазмохимическое травление плёнок через специальную маску. В конце полученные структуры измерялись в криостате замкнутого цикла с помощью СВЧ-анализаторов цепей. Исходя из полученных данных, учёным удалось описать модель того, как происходит гигантское изменение резонансной частоты в образцах «сверхпроводник — ферромагнетик — сверхпроводник».

«Данная работа является частью целого научного направления, начатого нашей группой ещё в 2015 году, на данный момент результаты исследований опубликованы в более чем 15 высокорейтинговых журналах», — добавил Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ, заведующий лабораторией сверхпроводящих и квантовых технологий ВНИИА им. Н.Л. Духова.

Как отмечают исследователи, результаты работы могут найти применение в криогенной СВЧ-электронике и магнонике, например при разработке элементов транзисторов, диодов и фильтров.

В работе, кроме сотрудников Центра перспективных методов мезофизики и нанотехнологий МФТИ и лаборатории криоэлектронных систем НИТУ МИСИС, принимали участие учёные из Всероссийского НИИ автоматики им. Н.Л. Духова, Института физики твёрдого тела РАН, МИФИ, Института кристаллографии им. Шубникова, Института нанотехнологий MESA+, а также Университета Твенте (Нидерланды).

© Habrahabr.ru