Термостабилизация телескопа

На Хабре уже много статей о любительской астрономии, но мне пока ещё не встречались статьи о вентиляции (охлаждении, термостабилизации) телескопа. Про то, зачем это нужно, написано, например, тут и тут. Вкратце, проблема в том, что если ГЗ (главное зеркало) телескопа теплее, чем окружающий его воздух, над ним возникает конвективный поток, который заметно портит изображение. Звёзды обзаводятся асимметричными «лучами», а протяженные объекты (планеты) теряют чёткость и контрастность. Маленькие телескопы довольно быстро остывают сами, а большие, особенно закрытой конструкции (такие, как Шмидт-Кассегрен), Требуется охлаждать принудительно. Самый простой и естественный способ — продувка ГЗ и трубы компьютерными кулерами. Редкие модели крупных ШК оборудованы кулерами, поэтому приходится сверлить дырки.

Считаю тему достойной Хабра: тут и разработка электроники, и Ардуино, и 3D печать. Эта статья — адаптация того, что я писал на Астрофоруме год назад, всё никак руки не доходили до Хабра.

Девайс назвал CoolScope. Потому что от клёвый, охлаждает, и эта надпись влезает в его экранчик. Все чертежи, схемы и код прошивки выложены на гитхабе. Далее будет очень много текста и картинок.

8063200559be3deb7cfbcd74082c0cb6.jpg

Итак, имеется довольно старый телескоп Meade LX200 GPS 12». При выборе схемы продувки (сколько кулеров и где) руководствовался этим исследованием. Правда, там про Ньютон, но, подумал я, ШК отличается лишь наличием спереди пластины корректора Шмидта, закупоривающего трубу. А если выбрать схему вдув-выдув, то это не будет проблемой. Сам же корректор в специальном охлаждении не нуждается, т.к. он относительно лёгкий и открыт с одной стороны. Итак, я выбрал самый оптимальный вариант — 3 кулера по кругу перед зеркалом на вдув, три кулера в заднике на выдув. Это отличается от того, что сделал Евгений М. со своим Селестроном (см. ссылку выше). Но схема рабочая, проверено по Юпитеру в июле 2021, когда была неделя отличного сиинга (и жара, когда стоящий на южной лоджии телескоп накалялся днём до 40°C, а ночью кулерами охлаждался до 25°C). Также я решил сделать всё красиво и функционально, так что в планах были напечатанные на 3D принтере детали, контроллер кулеров на Ардуино с термодатчиками и дисплеем и возможностью передавать данные о температуре ГЗ на компьютер.

Первый этап — прототипирование: установка кулеров «кое как», подключение их к компьютерному реобасу в качестве контроллера, и проверка всей концепции. Этот этап пришелся на период хорошего сиинга, и подтвердил правильность выбранного дизайна. Второй этап — макетирование контроллера на Ардуино, разработка софта (прошивки), разработка и заказ печатной платы, моделирование и печать на 3D принтере корпуса и адаптеров для установки кулеров на цилиндрический бок телескопа. Третий этап — финальная сборка, результат на картинке ниже. Прошивку ещё буду дорабатывать: после «боевого» выезда выявились некоторые недочёты, а к железу претензий нет, всё работает как часы. Выезд оказался неудачным по погоде, зато выяснилась динамика охлаждения — около 1 часа от дельты в 10°С до 0.3°C (зеркало на момент включения системы показывало 22°С, а на улице было 10–12°С). На застеклённой лоджии динамика несколько другая, потому что воздух там всё же несколько теплее, чем на улице (градусов на 5), а засасывается кулерами как раз воздух с лоджии. Для учёта этих факторов в меню контроллера есть настройка, с каких пар термодатчиков измерять дельту.

Одновременно с третьим этапом я несколько модифицировал электронику телескопа, чтобы комфортно питать кулеры от штатного разъёма »12V DC Out», а сам телескоп — от современных аккумуляторов типоразмера 26650.

Первый этап

Закупил компьютерные кулеры Noctua NF-A4×20 PWM. Не обязательно брать такие дорогие, просто я фанат тихих компьютеров, и эта болезнь передалась и сюда :) Главное, чтобы кулеры были достаточно производительные (эти дают 8–9 м3/час) и 4-пиновые, потому что я хотел полноценно управлять ими с помощью Ардуино (3-пиновыми тоже можно управлять, но схема будет сложнее). Из преимуществ этих кулеров, кроме тихой работы без вибрации — встроенные резиновые прокладки, набор клемм и разъёмов, дополнительные шнурки — удлинительный на 30 см и раздваивающий (Y-cable), чтобы посадить два кулера на одну линию. Всё это пригодится для сборки и прототипа, и финального изделия.

5577225afcfcab22eba2b0cdb9368e43.jpg

У Noctua есть ещё более тонкая модель (толщиной 10 мм) с почти такой же производительностью. Сейчас я бы взял их — они бы меньше торчали по бокам трубы. Но в то время, похоже, таких ещё не было в продаже.

К кулерам прикупил пылезащитные фильтры (на вдув) и декоративные решетки (на выдув). Фильтры на выдув ставить нет смысла — пыль через них проникнуть может только когда кулеры выключены, но они стоят позади зеркала, так что это не страшно. Где что покупал — уже не вспомнить. Что-то в магазинах техники (Ситилинк, DNS), что-то на Алиэкспрессе и Озоне, радиодетали в Чип и Дипе, Ардуино в каком-то профильном онлайн магазине, инструменты в Максидоме, Леруа и Строителе, крепёж в Крепкоме.

b9878a108c45f411f8dfc06e3725a12f.jpg

Теперь самое страшное — разборка телескопа. Поиск по форуму ничего не дал, но гугление вывело на этот гайд по разборке Meade LX 200. Там — 14» UCF, у меня — 12» GPS, но разницы почти нет. Думаю, все Миды устроены одинаково. В отличие от Селестронов, у Мидов задник не снимается. По крайней мере, у меня не получилось. Это добавило сложностей в работе — приходилось засовывать руки в трубу чуть ли не по плечо, скрючившись на корточках. Спина этому была не рада.

Первым делом отвинчиваем шесть винтов, удерживающих прижимное кольцо корректора, вынимаем его и сам корректор. Тут-то и пригодился набор дюймовых шестигранников. Главное, направьте трубу вверх, чтобы корректор не вывалился! Его держит только прижимное кольцо на 6 винтиках. На самом корректоре с краю и на трубе есть белая метка краской — это для совмещения при обратной сборке. Если её нет, придётся нарисовать.

813ec90b47699a1696608dc8670dc63e.jpg43f4cb65ab6e4ee266fed7e8941767ea.jpg

Работу с оптикой лучше проводить в х/б перчатках. Если коснётесь оптических поверхностей пальцами или костяшками пальцев — по любому останутся жирные пятна. Придётся заново мыть. Только не трогайте смазанные детали (морковку, шестерни и т.п.) -, а то и перчатки придётся стирать.

После этого надо провести некоторые замеры внутри и снаружи трубы, а именно, найти место для установки боковых кулеров, которые будут дуть на зеркало. В моём телескопе зеркало при фокусировке движется в пределах толстой, массивной обечайки задника, но немного выезжает за её пределы на синюю часть трубы. Сама синяя труба надевается на задник внахлёст, там что-то около сантиметра. Сверлить и трубу, и задник я не хотел, поэтому выбрал положение для кулеров так, чтобы они устанавливались только на синюю трубу, сразу за торцом обечайки задника. Тогда, при максимально выдвинутом вперёд зеркале, кулеры будут дуть прямо на его поверхность и немного в торец. При рабочем положении они будут дуть в пространство перед зеркалом, но воздух в трубе всё равно хорошо перемешивается, так что это не страшно. В принципе, можно установить кулеры под углом, чтобы они всегда дули на зеркало. Но тогда надо будет как-то просверлить эллиптические отверстия, я решил пока таким не заниматься.

Кстати, у этого телескопа и задник, и труба алюминиевые, так что просверлить их не проблема. Если у вас вдруг труба из карбона — то даже не знаю, придётся, наверное, работать только с задником.

Было бы хорошо закрепить сами кулеры внутри трубы, но в моём случае место не позволяло. Может быть, тонкие кулеры и влезли бы. Поэтому решил закрепить их снаружи, через напечатанные на 3D принтере адаптеры, заодно закрыть их сеточками-фильтрами с поролоном. Но надо тщательно выбрать место на окружности трубы, учитывая толщину кулеров и сеточек, а также запас для адаптеров, чтобы торчащие кулеры не мешали аксессуарам (искатель, гид) и не цеплялись за опоры вилки. А ещё, чтобы телескоп можно было положить горизонтально для транспортировки. Вариантов тут не много — одни кулер по центру сверху, два других снизу, максимально близко к опорам вилки. Тут мне пригодился заранее напечатанный прототип адаптера (к слову, он оказался слишком толстым, и я не учёл усадку пластика. Делайте толщину стенок 2–3 мм, и оставьте зазор в 0.5–1 мм для кулера, иначе не влезет). Я поставил примерно метки маркером прямо на трубе, а для сверления потом распечатал чертёж кулера и приклеил на корпус малярным скотчем. В чертеже я не учитывал кривизну трубы. Если у вас 10» и меньше, возможно, надо будет учесть.

1e8550e7294f78c8dd794b8ed37c6754.jpg81fb7e48c71e24c078de9f75639d9d5f.jpg88b34f28739bcfb79e8c26d6ccbcd9d7.jpg

После разметки, возвращаемся к разборке телескопа. Откручиваем по три винта, удерживающих ручки фокуса и фиксации зеркала. Вынимаем ручки. Ручка фокуса держится ухом за шпильку, торчащую от зеркала, поэтому её надо выкрутить максимально и немного сдвинуть вбок, чтобы освободить. Трубу надо наклонить задником вниз, а то зеркало поедет по морковке вперед, когда снимите ручку фокуса.

dea4c87c43c7c9035de7a5724960f41f.jpgbef73b9b55690bb4c6f7df077ba3f026.jpg564945aab4c65f948bb95609cacafd8c.jpg

Кладём телескоп на бок, на одну из опор вилки — это важный момент, далее будет понятно, почему. Возвращаемся к переднему срезу трубы, отвинчиваем винтик на конце морковки — он не даёт зеркалу совсем слететь с неё. Делаем это аккуратно, чтобы не уронить винтик на зеркало! Сама труба должна быть наклонена немного вверх, чтобы зеркало не поехало. Когда открутили винтик, можно вынимать зеркало, удерживая внешнюю трубку, которая ездит по морковке, ДВУМЯ РУКАМИ. Когда зеркало снимется с морковки, оно окажется неожиданно тяжёлым, поэтому две руки лучше, чем одна. Не хватайтесь за неподвижную часть морковки (ту, куда был вкручен винтик) — она смазана. Я для безопасности перед этой операцией подстелил полотенце, но можно и без него.

bc2ee8a30fa8e891255459bd2df07202.jpg

Зеркало так просто не вынуть из трубы — обечайка, удерживающая корректор, имеет диаметр меньше, чем ГЗ. Чтобы его вынуть, в ней есть две прорези — надо повернуть зеркало бочком и аккуратно провести его через них. Чтобы это было вообще реально сделать, надо положить телескоп на бок — тогда прорези будут сверху и снизу, и зеркало можно будет провести через них вертикально. Может быть, у вас конструкция иная, тогда действуйте по обстоятельствам. Для защиты зеркального покрытия я наклеил на торцы прорези половинки от войлочной прокладки для мебели (только не забудьте их потом убрать при сборке). Не касайтесь зеркального покрытия ничем, даже полотенцем, испортите нафиг! Оно крайне нежное и незащищенное, совсем.

ef2e63ab088c41b7eb73d5a9da85bcdc.jpg

Если сходу не получилось вытащить зеркало, устали руки и т.п. — не паникуйте, наденьте его обратно на морковку и передохните. После извлечения зеркала страшная часть позади, прячем его и корректор куда-нибудь подальше от детей и животных, и продолжаем.

85ec0d034f6ccc9127a2884948ab6c48.jpg

Приступаем к разметке отверстий на заднике. В моём случае оказалось очень удачно, что 40 мм кулер влезет с запасом в пустое пространство внутри трубы между боковой стенкой и большой шестернёй механизма фиксации зеркала. Контур шестерни хорошо виден по каплям масла на дне. От шестерни до задней поверхности зеркала, по измерениям, около 2.5 см, а толщина кулера 2 см. Места и тут с запасом, так что ставлю кулеры внутри трубы. Если у вас там места нет, ничего страшного, ставьте их снаружи. Просто будет не так эстетично.

4b5b2c094bcd09a306ba418fbbdc342d.jpg

Свободы с местом для установки их по окружности — много. У 14» на заднике имеются рёбра жёсткости, поэтому там свободы меньше. Общий принцип — расположить задние высасывающие кулеры как можно дальше от боковых нагнетающих, чтобы воздух дольше бродил по трубе. Т.е. в идеале, если кулеры стоят под углом 120°, сдвиг между задними и боковыми должен быть 60°. В реальности, угол между боковыми выйдет не совсем 120°, а задние нельзя расположить совсем уж произвольно. Я выбрал место для одного из кулеров на 3 часа (между ручками фокусировки и фиксации ГЗ), а для двух других примерно симметрично с другой стороны (на 7 ч и на 11 ч). На самом деле там не совсем ровно 3 ч, а чуть ниже, и не 7 ч, а чуть выше, иначе будет слишком близко к нижней рукоятке. На чертеже это всё учитывается.

37fc033a02ebe434d08f9c5917674eff.jpg

Чертёж рисовал в Corel Draw. Для этого измерил все окружности с помощью гибкой «рулетки», которая почему-то называется «метр». У жены, мамы или бабушки такая точно есть. Распечатал на двух листах A4, вырезал, приладил. Пришлось сделать несколько итераций, и повоевать с принтером, который почему-то упорно печатал всё в масштабе 95%. Для проверки полезно в чертеж добавить простую линейку из рисок через каждые 1 см, и приложить к распечатке настоящую линейку. Также полезно будет приложить кулер, чтобы убедиться в правильности чертежа.

66c4b0f9919ece26011e387d4f77f5eb.jpg

К слову, с чертежом задника я дважды ошибся. Как потом выяснилось (на третьем этапе), окружности внешнего контура и центральной выпуклости были неконцентричны, из-за чего отверстие верхнего кулера съехало вправо. Это вторая ошибка, а первая — я не предусмотрел достаточно места для управляющего контроллера в верхней части задника. Из-за этого его пришлось сделать асимметричным. На первом этапе я ещё не определился с дизайном контроллера, изначально вообще хотел оставить реобас на проводах. Потом решил всё же паять свой, и поставить его на задник слева, но не нашёл такого маленького OLED дисплейчика. Стандартный 1602 дисплей имеет аж 80 мм в длину. Поэтому прилепил контроллер сверху, но из-за слишком правого расположения кулера, пришлось сделать его асимметричным. Мораль такова — первый и второй этапы должны быть объединены :)

Итак, сверление. Сначала я сверлил задник, но не суть. Берём инструмент под названием кернер и намечаем им будущие отверстия, прямо через шаблон (для этого он и печатался). Без кернения сверло у вас сто пудов соскочит, оставив страшные царапины, прямо как в «Союзе МС-09». Перед кернением боковой поверхности трубы лучше надеть наушники, я чуть не оглох от звона! Колокол-то не слабый :)

146083ed229ec1ccc88e5f07bf7d1484.jpg

Сверлим отверстия сверлом 2.5 мм — четыре крепёжных и одно центральное направляющее для коронки. Боковину сверлить надо не перпендикулярно поверхности (по нормали), а параллельно оси кулера! Для этого в качестве направляющей я взял тот самый прототип адаптера, приклеив его скотчем.

daef8ffaa779375af752dfa353322739.jpg

Затем рассверливаем центральное до 8 мм, или сколько надо для вашего держателя коронок. Берём коронку на 38 и высверливаем большое отверстие на малых оборотах, не забывая подливать под неё масло. Учтите, что для кулера 40 мм нужно отверстие 38 мм, а коронку можно взять даже меньше, например на 36! Лучше возьмите свой кулер и измерьте. Слишком большая коронка может срезать только что сделанные крепёжные отверстия. Когда коронка почти пройдёт металл насквозь, остановитесь, и выломайте кружок изнутри рукой. Иначе он вывалится сам и поцарапает внутреннее чернение трубы.

f197a40d0f0de8d6718e3ef33e918d5a.jpg

Шуруповёрт надо взять помощнее, мой «карманный» пришлось заряжать раза три. Пылесос держите поблизости, стружки будет много. Следите, чтобы она не сыпалась в разъёмы на панели управления телескопа. Я каждый раз тщательно их пылесосил. Кстати, смазанную морковку я завернул в пакет, затянув его у основания малярным скотчем. Иначе стружка сразу бы налипла на смазку, и пришлось бы всё смывать растворителем.

fe30772750735f667450a73c6a4b6107.jpg

После обработки краёв напильником, нарезаем резьбу M3 в крепёжных отверстиях. Толщины металла (3 мм) достаточно для этого, так что можно будет обойтись без гаек при креплении кулеров. Далее можно для проверки приладить кулер вместе с сеточкой, прикрутив их длинными винтами M3 с потайной головкой (отверстия в сеточке как раз раззенкованы). С одним из кулеров я накосячил — то ли криво шуруповёрт держал, то ли что, но все крепёжные отверстия получились наклонены в одну сторону. Из-за этого кулер прикручивался под углом. Пересверлить отверстия уже не получится. На третьем этапе я решил эту проблему тем, что приклеил адаптер немного под углом. Но лучше не косячить :)

a482a5d296e8533125ac56dd4e61ff20.jpg

Теперь задник. Тут надо сверлить строго перпендикулярно, металл толстый, поэтому забить кувалдой винтик в криво просверленное отверстие не выйдет. Для этого нам понадобится инструмент под названием кондуктор для сверления. Выбираем отверстие на 3, прикладываем и сверлим через него. Если места не хватает, можно снять сам диск с отверстиями и прикладывать его, но будет менее точно. Последовательность та же — зенковка, 4 крепёжных и одно центральное отверстие М2.5, рассверловка центрального под направляющее коронкодержателя (это тоже надо делать через кондуктор!), затем сверление коронкой. Металл толстый, около 10 мм, поэтому делайте перерывы, давайте шуруповёрту остыть (да и руки будут просить отдыха).

7816b065f3af9e616009014b0276b237.jpg

Главное не спешить и всё тщательно проверять. Под конец я расслабился и криво просверлил направляющее отверстие, в результате коронка частично сгрызла одно из крепёжных. Пересверлить не получится, сверло соскочит в уже имеющееся рядом отверстие.

4f19ce4fdc8422ad812124f063dc4a51.jpg

Затем нарезаем резьбу М3 для крепления кулеров. Здесь я крутил я шуруповёртом на самых малых оборотах, секунду вперёд — полсекунды назад. Так получается точнее, чем ручным метчикодержателем, к тому же ручному инструменту мешает выпуклость в центре задника. Здесь тоже важно капать масло и не спешить. Если метчик застрял, лучше аккуратно выкрутить его и прочистить. Но я всё же поспешил и сломал метчик внутри отверстия. Всё, приехали — его уже не достать, не выкрутить методами с ютуба (он слишком мелкий) и не высверлить (сверло просто уйдёт в мягкий алюминий). Так что пришлось кулер и решётку прикручивать в три оставшиеся отверстия.

27fd1e774c82bc9888a59eb5230dbf10.jpg

Для теста прикручиваем кулеры изнутри винтами М3×25, а решётку снаружи винтами М3×6 в те же отверстия. Металл там толстенный, места хватает. Далее устанавливаем обратно главное зеркало и проверяем, что кулеры не мешают. Оно свободно задвинулось до упора, коснувшись шестернёй дна задника. Но этот этап можно и пропустить. После этого всё снимаем обратно, дорабатываем напильником края отверстий. Я поцарапал напильником внутренности трубы :) Пришлось закрасить матовой краской для металла. Ею же закрасил края отверстий для кулеров. Стало выглядеть так, как будто они всегда там были :)

c74df2ffb36310e0f7759dd4119bb5a1.jpg9d1212d5965eb75f85a43b45c5e4ec7c.jpg

Приступаем к сборке телескопа. Для начала, я покрасил чёрным маркером кулеры, которые будут установлены с боков трубы, чтобы они не давали бликов. Лучше было бы использовать ту же матовую краску, но я боялся залить подшипники. Кончики крепёжных винтов тоже зачернил. Сами боковые кулеры вместе с пылезащитными сеточками прикрутил пока прямо на трубу, т.к. адаптеры ещё не были готовы. Все провода проложил внутри трубы как можно ближе к стенкам, местами прижав самими кулерами. В других местах притянул их стяжками к пластиковым самоклеящимся площадкам для проводки — такие продаются в строительных магазинах. Стяжки проволочные, которыми обычно сматывают провода бытовой техники. Я их не выбрасываю, а храню как раз для таких случаев. Их можно легко раскрутить, чтобы просунуть дополнительный провод. А на этом этапе вы будете делать это часто, поверьте мне:)

6f15e72a7f14dca0363a653587dc56c1.jpg5944988069e5f3291ae50a46ac3f63ad.jpg

Тут мне пригодились удлинители и «двойники», идущие в комплекте с кулерами Noctua. Ими я соединил кулеры в две группы — одна для трёх нагнетающих боковых кулеров, вторая для трёх высасывающих тыловых. Один удлинитель использовал внутри трубы, другой вывел наружу. Не используйте короткие «удлинители» — это не просто удлинители, а замедлители — там впаян резистор, который снижает напряжение на кулере. Хотя потом их можно сделать донорами разъёмов. Концы проводов вывел через маленькое отверстие, которое расположено рядом с ручкой фокусировки, вытащив из него пластиковую заглушку. Провода не резал и не паял, поэтому пришлось вытащить контакты из разъёма, иначе он не пролез бы в это отверстие. Это делается просто — чем-то тонким нажимается язычок на контакте, и одновременно проводок вытягивается из разъёма. Не забудьте сфотографировать его перед этим, чтобы потом правильно вставить провода обратно.

aa42c498ab88e3524a60617430cef77c.jpg

Для управления кулерами на первом этапе использовал вот такой реобас (STW-6041), купленный б/у на авито. У него 4 независимых канала для кулеров с «типа PWM», и 4 термопары на длинных проводах. На самом деле это не совсем PWM, от платы идут трёхжильные провода, так что PWM там или реализован на самой плате (но криво), или управление кулерами осуществляется изменением напряжения. Скорее второе, т.к. на плате рядом с разъёмами видны транзисторы, которые заметно греются. Управление скоростью делается переменными резисторами с очень неудобной кривой. Мои кулеры удалось «затормозить» от 5200 RPM только до 2800, потом они просто выключались. Т.е. регулировка всего в два раза. А через Ардуино они запускаются аж от 5%, т.е. до 260 RPM! Хотя на практике такая скорость нафиг не нужна, всё же интересный факт, как может работать нормальный PWM.

8e2f227c5189d2b9098e87697be6cae0.jpg

Две термопары от реобаса завёл в трубу — одну закрепил на самоклеящейся площадке сбоку, рядом с ГЗ (без контакта со стенкой, она измеряет температуру воздуха внутри трубы), вторую через такую же площадку закрепил на тыльной стороне самого ГЗ. Делать это лучше всего через (более крупное) отверстие ручки фиксатора зеркала, когда оно уже установлено на место и правильно сориентировано (шпилька захвачена ручкой фокусировки). Не забудьте сразу закрутить страховочный винтик на конце морковки!. Других способов прикрепить термопару я не придумал, разве что клеить, пока ГЗ не установлено, и длиннющий провод внутри оставлять -, но его может зажевать шестерня фиксатора. Пинцет и аккуратные точные движения — и дело в шляпе. Сначала приклеил к ГЗ площадку для кабелей. Она пережила летнюю жару (2021) и две помывки зеркала и не отклеилась. Потом просунул термопару через неё и прижал к зеркалу с помощью отрезка термоинтерфеса, держит отлично. На третьем этапе я вместо термоинтерфейса использовал термоскотч. При закреплении проводов внутри, перед установкой ГЗ, оставил 10 см слабины для провода этой термопары, чтобы он не натягивался, когда ГЗ выдвинуто вперед, но и чтобы лишнего не болталось.

30badd27405e8c42f80c2579f25ddd05.jpg

Завершаем сборку, установив ручку фиксатора зеркала и корректор Шмидта. Длины проводов, торчащих из отверстия, на этом этапе оказалось достаточно, чтобы достать до реобаса. Получилась вот такая борода. Третью термопару оставил болтаться рядом, для измерения температуры воздуха рядом с телескопом, а четвёртую кинул за окно лоджии.

2dcc97458819977f8d557f7ab1cd7d49.jpg

По показаниям понятно, что где — ГЗ самое горячее (24.8°С), потом идет воздух внутри трубы (23.1°С), потом температура на лоджии (16.0°С), потом температура на улице (5.7°С). Следующее фото сделано через полтора часа. Температура ГЗ упала до 8.1, внутри трубы 7.4, на лоджии и улице стремительно холодает — 7.7 и 4.3°С. Надо сказать, что точность термопар у этого реобаса порядка градуса. Итого, в первом эксперименте имеем 16°С за полтора часа для 12» зеркала!

c7052d84aca5ea48415aa9a209a199a6.jpg

К слову, если кто-то решит использовать такой реобас, у него есть существенный для нас, северян, недостаток — он не показывает отрицательные температуры, а тупо замирает на 0°C. На дисплее просто нет сегмента для знака минус. Хотя на нём есть сегменты для превращения °C в °F, я не нашёл на плате никаких перемычек для переключения в Фаренгейты. Гугл тоже ничего про это не знает. Так что было решено всё же паять свой контроллер.

Кстати, реобас пришлось слегка модифицировать. Во-первых, я отрезал разъём Молекс и припаял вместо него стандартный разъём DC 5.5×2.1 мм под блок питания 12В. Но вот засада — в Молексе есть линия 5В, от которой питается подсветка дисплея и зуммер (пищалка). Зуммер мне не нужен, а подсветку я модифицировал так, чтобы она питалась от 12 В. Там 4 белых светодиода, все стоят параллельно и через токоограничивающие резисторы питаются от 5В, так что на них приходит по 3.3В. Я перерезал им ножки и спаял проводами так, чтобы все 4 оказались включены последовательно, и вся цепочка через один из резисторов к линии 12 В, которая нашлась рядом на плате. Таким образом, на каждый светодиод приходит около 2.8В, что вполне нормально, яркость немного снизилась, но это даже хорошо. По идее, эти светодиоды можно заменить на красные, и подключить через переменный резистор для регулировки яркости. Тогда девайс станет более астрономическим.

На этом первый этап завершён. Как кулеры повлияли на изображение? Отлично повлияли, см. фото в конце описания 3 этапа. После этого я ещё раз разобрал телескоп, чтобы помыть оптику, но это другая история. Кстати, площадку для термопары с ГЗ не отклеивал, она прекрасно пережила купание. Заодно переложил провода по-другому, просверлил для них отверстие с другой стороны задника, слева. А зря :) На тот момент я решил, что контроллер будет установлен слева, и там вроде бы хватает места. Но потом оказалось, что выбранный дисплей слишком длинный, и пришлось ещё раз пересмотреть решение. В общем, планируйте всё сразу, до сверления первой дырки.

Из вариантов я рассматривал также контроллер в виде отдельной коробочки, подключающейся к трубе многожильным проводом через разъём типа DIN-8. Надо восемь жил: земля, питание 12В, два PWM и два тахометра кулеров, два термодатчика (или две линии для 1-wire термодатчиков типа DS18B20 — питание и данные). Или же вариант смонтировать его в вилке монтировки, на горизонтальной площадке — там под пластиковой крышкой достаточно места. Но толстый провод на морозе… Всё же решил установить контроллер прямо на задник трубы, тогда от него будет идти только двухжильный провод питания 12В.

Если вам такой функционал не нужен, можно обойтись просто выводом разъёма 12В для кулеров, и соединить их все параллельно. Но я решил идти до конца, тем более что ничего особо сложного в этом нет. Наоборот, очень даже интересно. Это практически как пройти все этапы разработки прототипа электронного устройства — от идеи до готового изделия в корпусе.

Второй этап

Я раньше не имел дело с Ардуино, но представлял, что там к чему. Купил сразу набор с Arduino Mega — в него входит сама Мега (точнее, китайский клон), макетная плата, дисплей, и куча всего ещё. Кроме неё, купил три китайских клона Arduino Nano — это очень компактная платка, я сразу решил делать контроллер на ней. Одну подпалил в процессе экспериментов, так что хорошо, что купил сразу несколько.

Не буду здесь писать про Ардуино, думаю, на Хабре все знают, что это. На фото — опыты с китайским графическим OLED дисплейчиком 128×64 пикселей. Первоначальная задумка была поставить что-то вроде такого дисплея, и выводить на него график температуры, чтобы следить за остыванием зеркала. Но позже я подумал, что это будет просто игрушка. Интересно будет только в первые несколько раз. Для наблюдений дисплей всё равно надо выключать, чтобы не мешал. Если захочется строить график, у Ардуино же есть USB — можно подключить к компьютеру и передавать данные на него. Так что я решил так не заморачиваться и сделать простой текстовый дисплей, отображающий текущую температуру, дельту и дополнительную информацию, например скорость кулеров и напряжение/заряд батареи. Для этого достаточно стандартного текстового дисплея 1602, хотя графический, конечно, был бы лучше — больше информации влезло бы. Но долгий поиск на Алиэкспрессе показал, что выбор не так велик.

f7e82f22a4e714e17fe129025f4c8e6c.jpg

Есть большое разнообразие ЖК дисплеев, от простых (и громоздких) 1602 или аналогов того, что стоит в пульте телескопа, до полноцветных IPS матриц как в смартфонах. Но есть еще более интересные штуки — это OLED дисплеи. Для телескопа это отличный выбор, потому что OLED не боится мороза — он остаётся быстрым и ярким даже при -20°С (проверено в морозилке). В то время как обычный ЖК в пульте становится вялым и малоконтрастным уже при нуле. Из недостатков китайских OLED, помимо цены, — малый срок службы: пиксели быстро выгорают, если постоянно светятся. Но на телескопе дисплей редко будет включен, только при запуске, изменении настроек и редких включениях для контроля температуры. Так что я решил присмотреться к OLED. На Али есть куча мелких графических дисплейчиков вроде того 128×64, они очень дешёвые, буквально 100 рублей, но имеют белый (или жёлто-голубой) цвет свечения, и слишком уж маленькие. Тот 128×64, с которым я экспериментировал, имеет диагональ менее 1 дюйма. Более крупные — только тексто-графические 1602 от компании Winstar, про которые есть полезная статья на Хабре (там же в конце — ссылка на статью про обход бага с инициализацией). Я заказал один с красным цветом свечения пикселей — то, что нужно для телескопа. В статье также описано, как управлять его яркостью (диммировать) — работает, но в ограниченных пределах (у простого ЖК подсветка на обычных светодиодах, яркость которых можно менять хоть от нуля — запишем как ещё один недостаток OLED). Вот, например, как выглядит обычный ЖК и Винстаровский OLED. ЖК из набора Ардуино Мега имеет белые символы на синем фоне, но на Али есть и более подходящие нам красные символы на чёрном фоне. Уже на этом фото видно, как тормозно обновляются пиксели на ЖК — некоторые цифры размыты, потому что переключаются слишком часто. Не сравнить с OLED, который всегда быстрый и контрастный.

STN дисплейSTN дисплейOLED дисплейOLED дисплей

В общем, я решил делать контроллер на таком дисплее, но оставить возможность подключить стандартный 1602 ЖК (в финальном устройстве отличий в схеме подключения вообще нет, только в программе). Тем временем параллельно шерстил Али на предмет поиска более компактной модели дисплея, но так ничего не нашёл, и оставил этот. Длина его платы 80 мм, и это многовато для установки на задник телескопа слева, там, где я изначально хотел установить контроллер, и уже просверлил отверстие для проводов. Так что пришлось устанавливать его в единственно возможно место — сверху, рядом с верхним кулером. Но из-за не очень удачного расположения кулера, пришлось сместить дисплей вправо, и весь прибор оказался асимметричным. Можно было бы сделать корпус прямоугольным, но на 3D принтере можно напечатать любую форму, к тому же мне нужно было место для проводов внутри корпуса (которого всё равно оказалось маловато).

ОбломОблом

Вот так выглядел прототип (или, скорее, макет) перед началом разработки печат

© Habrahabr.ru