Предиктивная аналитика в промышленности: путь к повышению эффективности и снижению затрат

Предиктивная аналитика кардинально меняет подход к обслуживанию и управлению промышленным оборудованием. В условиях цифровой трансформации бизнеса, особенно в производственном секторе, она становится незаменимым элементом для повышения эффективности, минимизации простоев и снижения затрат. Рассмотрим, как предиктивная аналитика помогает промышленным компаниям достигать стратегических целей и что важно учитывать при её внедрении.

Что такое предиктивная аналитика?

11bdf9f2de0c5a7af5db3d8cc0b8071b.png

Предиктивная аналитика — это система позволяющая прогнозировать возможные события на основе анализа данных, поступающих с различных источников. В промышленности эта технология используется для диагностики оборудования, что помогает выявить потенциальные неисправности задолго до их наступления. Предиктивные модели строятся на основе данных, поступающих с датчиков, установленных на оборудовании, и применяют алгоритмы машинного обучения и математические модели для прогнозирования состояния техники.

Кому и зачем это нужно?

Предиктивная аналитика необходима компаниям разных отраслей:

  • Производственные компании используют её для предотвращения простоев и повышения производительности.

  • Нефтегазовые и энергетические компании применяют для поддержания оптимального состояния высоконагруженного оборудования.

  • Машиностроительные предприятия улучшают производственные процессы и продлевают срок службы оборудования.

  • B2B-компании оптимизируют продажи и маркетинг, прогнозируя поведение клиентов.

  • SaaS-компании используют для улучшения управления рисками и адаптации к рыночным условиям.

Предприятия, внедряющие предиктивные инструменты, в 1,8 раза чаще перевыполняют поставленные цели, а их темпы роста прибыли оказываются втрое выше среднего по отрасли. Кроме того, предиктивная аналитика позволяет снизить затраты на обслуживание оборудования на 20–30% и оптимизировать численность ремонтных бригад на 15–20%.

Распространение предиктивной аналитики в России

Согласно экспертным оценкам, около 24% российских промышленных предприятий уже внедрили системы предиктивной аналитики для оптимизации технического обслуживания и ремонта. Еще 42% компаний используют эту технологию для оптимизации технологических процессов.

Наиболее часто предиктивная аналитика применяется для мониторинга критически важного оборудования, такого как прокатные станы, прессы и тяговые установки. Выбор оборудования для мониторинга зависит от специфики конкретного предприятия и определяется на основе анализа критичности и стоимости возможных простоев.

Примеры успешного внедрения предиктивной аналитики

British Petroleum

09d4eedbd5c9d5d28d31b8b1f54dd401.jpg

Яркий пример успешного применения предиктивной аналитики в нефтегазовой отрасли. После внедрения системы предиктивной аналитики компания:

  • Повысила надежность объектов разведки и добычи полезных ископаемых с 88% до 95%.

  • Сэкономила 7 миллиардов долларов с 2014 по 2017 год благодаря инвестициям в большие данные, включая предиктивную аналитику.

Лукойл-Пермнефтеоргсинтез

444d7d4c4a0c2bc2da20f05e048c618c.jpg

На предприятии «Лукойл-Пермнефтеоргсинтез» система предиктивной аналитики предсказывает выход оборудования из строя как минимум за 50 дней. Это позволяет заблаговременно планировать ремонтные работы и минимизировать незапланированные простои.

Газпром нефть

db1b51d732812e4eb4aa0f57ba7a7aa4.jpg

Газпром нефть, используя предиктивную аналитику, добилась следующих результатов:

  • Сокращение количества простоев на производстве на 30%.

  • Уменьшение сроков выполнения работ по ремонту и сервису на 21%.

Этапы внедрения предиктивной аналитики

Для успешного внедрения предиктивной аналитики на предприятии необходимо пройти несколько ключевых этапов:

  1. Сбор данных: Установка датчиков на оборудование для мониторинга его состояния. Датчики фиксируют показатели вибрации, тока, температуры и других параметров, которые затем передаются в систему для анализа.

  2. Обработка данных: Полученные данные фильтруются и преобразуются для анализа. На этом этапе важно обеспечить корректную фильтрацию, чтобы исключить лишние шумы и сохранить ключевые параметры.

  3. Анализ данных: Основным методом анализа является спектральный и трендовый анализ вибраций. Это позволяет выявить скрытые дефекты и оценить динамику изменения состояния оборудования.

  4. Прогнозирование: На основе собранных данных система строит прогнозы по остаточному ресурсу оборудования. Это даёт возможность заранее определить, когда потребуется проведение технического обслуживания, предотвращая аварийные остановки.

Пример применения: Установка автоматического формирования прессовок

Для лучшего понимания, как предиктивная аналитика работает на практике, рассмотрим конкретный пример — мониторинг установки автоматического формирования прессовок. Эта установка используется для автоматизированной подготовки порошковых материалов, где важно поддерживать бесперебойную работу нескольких ключевых компонентов:

Горизонтальный пресс

Горизонтальный пресс

  • Питатель пека — отвечает за подачу материала.

  • Вихревая воздуходувка — обеспечивает равномерное распределение порошка.

  • Мотор-редуктор — управляет движением прессовки.

Мониторинг состояния этих узлов осуществляется с помощью датчиков вибрации и тока, что позволяет отслеживать изменения в реальном времени и своевременно выявлять потенциальные дефекты.

Применение предиктивной аналитики на данной установке позволило добиться следующих результатов:

1. Разделение режимов работы для более точной диагностики. Измерения вибрации и выявление дефектов зависят от режима работы оборудования.

  • Холостой ход (ХХ) — режим работы без нагрузки, который используется для выявления дефектов, возникающих на начальной стадии эксплуатации.

  • Рабочий режим (РБ) — режим, при котором происходит полное формование заготовок под нагрузкой. В этом режиме диагностируются дефекты, которые проявляются только при работе оборудования.

Эти режимы подбираются в зависимости от типа материала. Оператор постоянно видит текущий режим работы на мониторе, что позволяет контролировать процесс и быстро реагировать на любые изменения.

e44b61848b9a354827a0cb89f1dcc205.jpeg

График показывает, как отличается вибрация режима холостого хода от режима нагрузки. Амплитуда общего уровня виброускорения (м/с2) — Х в зависимости от времени (дата/время) — Y

2. Контроль состояния узлов с помощью датчиков вибрации. Датчики вибрации устанавливаются на подшипниковые узлы и позволяют контролировать такие критически важные узлы машины, как зубчатые передачи, приводы и другие компоненты, отслеживать вибрационные параметры во время работы оборудования. Повышенная вибрация — один из наиболее явных признаков того, что с оборудованием что-то не так. Изменения амплитудно-частотных характеристик вибрации могут указывать на износ деталей, несоосность валов, повреждение подшипников или другие дефекты. Датчики вибрации фиксируют эти изменения и передают данные в систему мониторинга, которая анализирует их в реальном времени.

Для точной диагностики оборудования применяются два основных метода анализа данных:

Спектральный анализ вибрации — это график зависимости амплитуды вибрации от частоты колебаний. Этот анализ позволяет выявлять скрытые дефекты в оборудовании, которые могут не проявляться при обычном визуальном контроле.  Примером спектральной диагностики может служить анализ состояния зубчатой передачи питателя пека. Диапазон от 5100 до 5500 Гц выбран не случайно. В этом диапазоне на собственных частотах зубчатой пары проявляются дефекты её износа. Увеличение амплитуды вибрации, появление новых модуляционных составляющих в этом диапазоне сигнализирует о стадии износа, что позволяет предприятию своевременно планировать ремонт​​.

Трендовый анализ помогает отслеживать изменения амплитуд вибрации во времени. Этот метод позволяет выявлять тенденции, такие как рост амплитуды в определённой частоте, что может указывать на зарождающийся дефект. Поскольку вибрационные характеристики зависят от режима работы установки, трендовый анализ помогает точно оценить состояние оборудования и принять меры до возникновения серьёзных неисправностей.

8012d717f057c0a2c1c350a590287322.jpeg

Графики сравнения спектров виброускорения на рабочем режиме и на холостом ходу. По Х — частота (Гц), по Y — амплитуда вибрации (м/с2)

f1aa5064017d87e3158dac280520a431.jpeg

Графики сравнения спектров виброускорения на рабочем режиме и на холостом ходу. По Х — частота (Гц), по Y — амплитуда вибрации (м/с2)

Применение этих методов на практике позволяет предприятиям своевременно выявлять проблемы и планировать техническое обслуживание, предотвращая аварийные остановки и продлевая срок службы оборудования.

Проблемы при внедрении предиктивной аналитики

Несмотря на очевидные преимущества, внедрение предиктивной аналитики сопряжено с рядом проблем:

Разрозненность данных

Одной из главных сложностей, с которой сталкиваются предприятия при внедрении предиктивной аналитики, является разрозненность данных. Различные системы АСУ ТП, мобильные диагностические комплексы и ERP-системы часто не интегрированы между собой. Это приводит к тому, что данные хранятся в разных местах, и их анализ становится затруднительным

Несовместимость оборудования и программного обеспечения.

На многих предприятиях используется техника разных производителей, и её объединение в единую систему — сложная задача. Это вызывает сложности при внедрении предиктивной аналитики в промышленных условиях​.

Решение

Для преодоления этих проблем необходимо внедрение централизованной цифровой платформы, которая позволит объединить все данные в одну базу. Такая платформа должна поддерживать интеграцию с разными видами оборудования и системами, обеспечивая совместимость и возможность совместного анализа.

Примером такой системы может служить платформа SAFE PLANT, которая позволяет собирать и обрабатывать данные из различных источников, строить предиктивные модели и интегрироваться с системами управления предприятия. Эта система способна объединять данные из различных источников, обеспечивая их централизованное хранение и анализ. SAFE PLANT поддерживает работу с большими объемами данных, включая динамические данные (формы сигналов, спектры вибрации, термограммы и др.), которые часто остаются неиспользованными в традиционных системах управления производством.

Предиктивные технологии открывают перед компаниями огромные возможности для роста и развития. Благодаря им бизнес не только быстрее адаптируется к рыночным изменениям, но и извлекает выгоду из будущих трендов, оставаясь на шаг впереди конкурентов. Эти технологии позволяют сократить расходы, повысить прибыльность и создать прочную основу для цифровой трансформации. Инвестиции в предиктивные технологии — это инвестиции в будущее бизнеса, открывающие новые возможности для повышения эффективности и внедрения инновационных подходов к управлению производством. Использование данных и прогнозирование спроса становятся ключевыми элементами для внедрения инновационных бизнес-моделей, которые обеспечивают долгосрочное лидерство на рынке. Компании, инвестирующие в предсказание будущего, неизбежно занимают лидирующие позиции в своей отрасли.

© Habrahabr.ru