«Под капотом» СХД Huawei: фирменные технологии, которых нет у других

Представленные на рынке системы хранения данных, в основной своей массе, мало чем отличаются друг от друга, ведь многие вендоры заказывают оборудование едва ли не у одних и тех же ODM-производителей. У нас же почти все свое, начиная от шасси и заканчивая контроллерами, технологиями типа RAID 2.0+ и софтом.

32299810bc9bd9ada307791b87ed4399.jpg

Под катом немного деталей про то, что такого необычного может быть в каждом из узлов системы хранения данных.

Что интересного на уровне модуля


Конструкционно все современные СХД от любого производителя выглядят одинаково: во фронтальную часть стального коробчатого шасси устанавливаются контроллеры, в тыльную — интерфейсные модули. Есть еще блоки питания и вентиляции. Казалось бы, все привычно и стандартно. Но на самом деле мы внедрили в эту парадигму много всего интересного.

ba1c23fa68f9c8598b0834d1ccddeeb4.png

Начнем с монтажа элементов системы хранения в шасси. Магнитных 3,5-дюймовых дисков в СХД становится меньше, начинают преобладать гибридные системы и all-flash. Но даже несколько дисковых накопителей с частотой вращения шпинделя до 15 тысяч оборотов в минуту создают вибрацию, которую нельзя не учитывать. У нас на этот случай выработан целый свод рекомендаций — как распределять по дисковым полкам магнитные накопители с различными параметрами.

Пусть даже на какие-то доли процентов, но на надежность это влияет. А в масштабе крупного ЦОДа доли процентов на один накопитель превращаются в ощутимые показатели отказов и сбоев. Чтобы вибрация отдельных дисков в меньшей степени передавалась через жесткую конструкцию шасси, салазки под диски мы оборудуем резиновыми или металлическими демпферами. Чтобы нейтрализовать еще один источник вибрации в СХД  — модули вентиляции — ставим двунаправленные вентиляторы, а все вращающиеся элементы изолируем от корпуса шасси.

Для шпиндельных накопителей минимальная тряска — уже проблема: головки начинают сбиваться, производительность существенно падает. SSD — другое дело, вибрации они не боятся. Но надежная фиксация компонентов по-прежнему важна. Взять процесс доставки: ящик могут уронить или небрежно швырнуть, поставить боком или вверх тормашками. Поэтому у нас все компоненты СХД закрепляются строго в трех измерениях. Это исключает возможность их смещения при транспортировке, предохраняет разъемы от выскакивания из гнезд при случайном ударе.

222452b713906c3b059a782df1df8778.png

Когда-то давно мы начинали с разработки вычислительной техники для телеком-индустрии, где стандарты работоспособности по температуре и влажности традиционно высоки. И мы перенесли их и на другие направления: металлические детали СХД не окисляются даже при повышенной влажности — за счет применения никелирования и оцинковки.

Тепловой дизайн наших СХД разрабатывался с упором на равномерность распределения температуры по шасси — чтобы не допустить ни перегрева, ни слишком сильного охлаждения какого-либо угла дисковой полки. Иначе не избежать физической деформации — пусть даже незначительной, но все-таки нарушающей геометрию и способной привести к сокращению срока работы оборудования. Таким образом выигрываются какие-то доли процента, но на общую надежность системы это все-таки влияет.

Полупроводниковые тонкости


Важные компоненты СХД мы дублируем: если что-то выйдет из строя — всегда есть подстраховка. К примеру, модули питания у младших моделей работают по схеме 1+1, у более солидных — 2+1 и даже 3+1.

6a620563cf83f69d7107cf71c734045a.png

Контроллеры, которых в системе хранения как минимум два (одноконтроллерные системы мы не поставляем) тоже резервируются. В СХД 6800-й и более старших серий резервирование производится по схеме 3+1, в младших моделях — 1+1.

Зарезервирован даже модуль управления (management board), который непосредственно на работу системы не влияет, а нужен только для изменения конфигурации и мониторинга. Кроме того, любые интерфейсные платы расширения для СХД у нас продаются только парами, чтобы у клиента имелся резерв.

Все компоненты — БП, вентиляторы, контроллеры, менеджмент-модули и т.п. — оснащены микроконтроллерами, способными реагировать на определенные ситуации. Например, если вентилятор начинает сам по себе сбавлять обороты, на управляющий модуль посылается сигнал тревоги. В результате заказчик имеет полную картину состояния СХД — и может при необходимости заменить некоторые компоненты самостоятельно, не дожидаясь прибытия нашего сервисного инженера. А если политика безопасности заказчика позволяет, мы настраиваем контроллеры так, чтобы они передавали информацию о состоянии железа в нашу техподдержку.

Свои чипы лучше и понятнее


Мы — единственная компания, разрабатывающая собственные процессоры, чипы и контроллеры твердотельных накопителей для своих СХД.

3b74b5cd764590f64381ddedac4e61f4.png

Так, в некоторых моделях в качестве основного процессора системы хранения (Storage Controller Chip) мы используем не классический Intel x86, а ARM-процессор HiSilicon, нашего дочернего предприятия. Дело в том, что ARM-архитектура в СХД — для расчета тех же RAID и дедупликации — показывает себя лучше, чем стандартная х86-я.

Наша особая гордость — чипы для SSD-контроллеров. И если серверы у нас могут комплектоваться полупроводниковыми накопителями сторонних производителей (Intel, Samsung, Toshiba и др.), то в системы хранения данных мы устанавливаем только SSD собственной разработки.

3d050d0726471a2fd88d4bb12df5d001.png

Микроконтроллер модуля ввода-вывода (smart I/O чип) в системах хранения — тоже разработка HiSilicon, как и Smart Management Chip для удаленного управления хранилищами. Использование собственных микросхем помогает нам лучше понимать, что происходит в каждый момент времени с каждой ячейкой памяти. Именно это позволило нам свести к минимуму задержки при обращении к данным в тех же СХД Dorado.

bc4d92d3ecad08047aff3dff031ecdab.png

Для магнитных дисков с точки зрения надежности чрезвычайно важен постоянный мониторинг. В наших СХД поддерживается система DHA (Disk Health Analyzer): диск сам непрерывно фиксирует, что с ним происходит, насколько хорошо он себя чувствует. Благодаря накоплению статистики и построению умных предиктивных моделей удается предсказать переход накопителя в критическое состояние за 2–3 месяца, а не за 5–10 дней. Диск еще «живой», данные на нем в полной безопасности –, но заказчик уже готов его заменить при первых признаках возможного сбоя.

RAID 2.0+


Отказоустойчивый дизайн в СХД мы продумали и на уровне системы. Наша технология Smart Matrix представляет собой надстройку поверх PCIe — эта шина, на основе которой реализованы межконтроллерные соединения, особенно хорошо подходит для SSD.
6986b677b32270689efb4227ac50c0ba.png

Smart Matrix обеспечивает, в частности, 4-контроллерный full mesh в нашем СХД Ocean Store 6800 v5. Для того чтобы каждый контроллер имел доступ ко всем дискам в системе, мы разработали особый SAS-бэкэнд. Кэш, естественно, зеркалируется между всеми активными в данный момент контроллерами.

65c8d302d80df3ddb29db0875e6df968.png

Когда происходит сбой контроллера, сервисы с него быстро переключаются на контроллер зеркала, а оставшиеся контроллеры восстанавливают взаимосвязь, чтобы зазеркалить друг друга. В то же время данные, записанные в кэш-память, имеют зеркальный резерв для обеспечения надежности системы.

584b22f687f063043728ab0db9ed8392.png

Система выдерживает отказ трех контроллеров. Как показано на рисунке, при отказе элемента управления A данные кэша контроллера B будут выбирать контроллер C или D для зеркального отображения кэша. Когда выходит из строя контроллер D, контроллеры B и C делают зеркальное отображение кэша.

a93e1dcdc50efd90618de7857e1d7583.png

Система распределения данных RAID 2.0 — стандарт для наших СХД: виртуализация на уровне дисков давно пришла на смену безыскусному поблоковому копированию содержимого с одного носителя на другой. Все диски группируются в блоки, те объединяются в более крупные конгломераты двухуровневой структуры, а уже поверх ее верхнего уровня строятся логические тома, из которых составляются RAID-массивы.

e660808bfa5e8e4599fecf7e8ad99dcd.png

Основное преимущество такого подхода — сокращенное время перестроения массива (rebuild). Кроме того, в случае выхода из строя диска перестроение производится не на стоявший все это время «под паром» (hot spare) диск, а на свободное место во всех используемых дисках. На рисунке ниже в качестве примера показаны девять жестких дисков RAID5. Когда жесткий диск 1 вышел из строя, данные CKG0 и CKG1 повреждены. Система выбирает CK для реконструкции случайным образом.

0fbfe16756f70b8249910219069942fe.png

Нормальная скорость восстановления RAID составляет 30 МБ / с, поэтому для восстановления данных объемом 1 ТБ требуется 10 часов. RAID 2.0+ сокращает это время до 30 минут.1bb3c284f588667973debf1fe2713093.png

Нашим разработчикам удалось добиться равномерного распределения нагрузки между всеми шпиндельными накопителями и SSD в составе системы. Это позволяет раскрыть потенциал гибридных СХД гораздо лучше, чем привычное использование твердотельных накопителей в роли кэша.

44ce5906eb4c867c8fed0db763df36f5.png

В системах класса Dorado мы реализовали так называемся RAID-TP, массив с тройной четностью. Такая система продолжит работать при одновременном выходе из строя любых трех дисков. Это повышает надежность по сравнению с RAID 6 на два десятичных порядка, с RAID 5 — на три.

62459d61809ed563a11e0d8fbd7ec173.png

RAID-TP мы рекомендуем для особо критичных данных, тем более что благодаря RAID 2.0 и высокоскоростным flash-накопителям на производительность это особого влияния не оказывает. Просто нужно больше свободного пространства для резервирования.

f090f15c1b0772e6145a8a2be38a9b30.png

Как правило, системы all-flash используют для СУБД с маленькими блоками данных и высоким IOPS. Последнее не очень хорошо для SSD: быстро исчерпывается запас прочности ячеек памяти NAND. В нашей реализации система сперва собирает в кэше накопителя сравнительно крупный блок данных, а затем целиком записывает его в ячейки. Это позволяет снизить нагрузку на диски, а также в более щадящем режиме вести «сборку мусора» и высвобождение места на SSD.

Шесть девяток


176aefc417106ccbc2320bd0cb7e7fcd.png

Перечисленное выше позволяет говорить об отказоустойчивости наших систем на уровне всего решения. Проверка реализуется на уровне приложения (например, СУБД Oracle), операционной системы, адаптера, СХД — и так вплоть до диска. Такой подход гарантирует, что ровно тот блок данных, который пришел на внешние порты, безо всяких повреждений и потерь будет записан на внутренние диски системы. Это подразумевает enterprise-уровень.

e94ffb4d8afa053872de75a76ff78861.png

Для надежного хранения данных, их защиты и восстановления, а также быстрого доступа к ним мы разработали целый ряд фирменных технологий.

5d684f78a76b0210bfc47eaa1cf933c8.png

HyperMetro — наверное, самая интересная разработка последних полутора лет. Готовое решение на базе наших систем хранения для построения отказоустойчивого метро-кластера внедряется на уровне контроллера, никаких дополнительных шлюзов или серверов, кроме арбитра, оно не требует. Реализуется просто лицензией: две CХД Huawei плюс лицензия — и это работает.

27b034cd082f3275da66b2444c0e57fb.png

Технология HyperSnap обеспечивает непрерывную защиту данных без потери производительности. Система поддерживает RoW. Для предотвращения потери данных на СХД в каждый конкретный момент используется множество технологий: различные снэпшоты, клоны, копии.

a13880a7899505127f17c3d5184372ce.png

На основе наших СХД разработано и проверено на практике как минимум четыре решения для аварийного восстановления данных.

a3effccbfe265b951f2d154285156e29.png

Еще у нас есть решение для трех дата-центров 3DC Ring DR Solution: два ЦОДа в кластере, на третий идет репликация. Можем организовать организована асинхронную репликацию или миграцию со сторонних массивов. Имеется лицензия smart virtualization, благодаря чему можно использовать тома с большинства стандартных массивов с доступом по FC: Hitachi, DELL EMC, HPE и т.д. Решение реально отработанное, аналоги на рынке встречаются, но стоят дороже. Есть примеры использования в России.

В итоге на уровне всего решения можно получить надежность шесть девяток, а на уровне локальной СХД — пять девяток. В общем, мы старались.

Автор: Владимир Свинаренко, старший менеджер по IT-решениям Huawei Enterprise в России

© Habrahabr.ru