Пересчитывая Рамануджана

Размышляя над тем, как получить сотый знак при делении единицы на число пи, я обратился к тем формулам, которые выработало человечество. Автором одной из них является поразительный индийский математик Рамануджан. Я не буду излагать его жизнь и результаты, все это есть в Сети. Скажу только, что это удивительный человек, который образно говоря, «разговаривал» с числами, причем каждое натуральное число было его личным другом. Будучи очень религиозным человеком, Рамануджан, по видимому, видел в мире чисел и в отношениях, которыми этот мир пронизан, проявление божественной гармонии и красоты. И раз Всевышний говорит с нами через откровения, то такой же подход Рамануджан использовал к изучению математики. «Его понимание сущности математического доказательства было более чем туманным; он пришел ко всем своим результатам, как ранним, так и более поздним, как верным, так и неверным, при помощи странной смеси интуитивных догадок, индуктивных соображений и логических рассуждений». Так говорил его современник. А теперь формула Рамануджана:cafc46d8ef0b80a23216bde57cc906e0.jpg С моей точки зрения это что-то невозможное! Обычный человек не в состоянии прийти к такому выражению. При этом надо учесть, что до 27 лет Рамануджан занимался математикой сам для себя, не имея контакта с серьезными специалистами.Все расчеты я проводил на платформе 1С: Предприятие, редакция 8.2. Спасибо разработчиками, что они реализовали в программе длинную математику для умножения и сложения, это очень упрощает жизнь. Для деления есть ограничение в 27 знаков после запятой, поэтому деление пришлось реализовать самому. Но обо все по порядку.Первая задача – уметь вычислять √2 с любой точностью. Для этого обычно ищут ноль следующей функции:f(x)=x²-2,С этой целью используют итерационную формулой Герона, в которой a=2:034a1126c3ca95f07eef642dff55391a.jpg Но если у вас нет длинного деления, когда вы можете указать количество значащих цифр после запятой, то точность вычислений по данной формуле будет ограничиваться точностью деления, которая реализована в системе. В 1С это 27 знаков и именно такую минимальную погрешность я смог получить. Тогда я решил проверить, как будет работать разложение в ряд Тейлора для функции квадратный корень из (1+х). Ниже приводится соответствующая формула для разложения.803f23e5a046e5784192334fbc618f23.jpg Отметим, что каждый последующий член ряда отличается от предыдущего знаком и коэффициентом 0.5*x*(2-3/n). Корень из двух я планировал получить, используя тождество:3fc86c96b59009786b949d8a70d9c826.jpg С этой целью значение ряда будем вычислять в точке 1/49. Для того, чтобы обойти ограничения на точность конечного результат от представления результатов деления, число 1/49 будем представлять следующим образом. Дробь 1/7 имеет период 142857, поэтому сначала я формирую десятичную запись данной дроби с количеством знаков после запятой, которое определяется требуемой точностью расчетов, затем полученное значение умножаю само на себя. А вот множитель (2-3/n) я оставил таким, какой он есть. Формула готова осталось проверить, как она работает. Результат я сравнивал с данными, которые выдает www.wolframalpha.com. Для точности в 100 знаков после запятой потребовалось 57 членов ряда, результат совпал с эталонным значением. По-видимому, я стал первым человеком на планете, который провел вычисление корня из двух в 1С с такой точностью. Разумеется, все благодаря тому, что для тех задач, которые реализуются на данной платформе это совершенно не нужно. Но это был только первый шаг к использованию формулы Рамануджана. Последующие эксперименты показали, что без реализации длинного деления продвинуться за 27 значащих цифр нельзя. Поэтому в 1С я написал функцию с названием ДлинноеДеление, которая вычисляет дробь 1/x, где х это первый аргумент функции, а количество знаков после запятой — второй. После этого я понял, как велик был Сриниваса Рамануджан Айенгор. Благодаря ему я стал первым человеком на планете, который вычислил в 1С значение единица разделить на пи с точностью более чем сто знаков после запятой! Для проверки полученного результата я опять воспользовался www.wolframalpha.com. После этого уже не было никаких преград для определения значения выражения tg(10¹ºº). Я отбросил целое количество пи, и оставил 0.12*пи. Первый член в разложении tg(x), который равен х, дает нам следующее значение:0.12*пи=3/25*пи≈3*1/8=3*0,125=0,375.Если учесть второй член разложения, то к приведенному значению надо будет добавить (0,375)³/3. Заменяем выражение в скобках на 0.4, выполняем элементарные операции и получаем 0,021. Тогда уточненная оценка будет 0,396. На этом и остановимся.Заключение Данная статья является примером того, как в 1С можно выполнять вычисления с любой заданной точностью. Представляет ценность для преподавателей информатики и тех, кто связан с обучением программированию в среде 1С.

© Habrahabr.ru