Отладочная плата для Arduino Nano

На данный момент плата используется как учебная, тестер модулей с интернет- магазинов для различных микроконтроллеров (МК) и для создания законченных конструкций с минимальным изменением топологии печатной платы. В общем достаточно универсальная. Как всегда универсальность- это компромисс, который считаю был достигнут.

Блок- схема


0otshv4tktibpqgxuaqp6vpfw-w.jpeg

Что имеется на плате: одно место используется для E01-ML01DP5 2,4ГГц или LoRa-01 433MГц. Одновременно их можно подключить используя вариант «на проводках». Еще SIM800L+ конвертер уровней 5<-> 2.7 В для него, LCD ST7735S 128×128 или 128×160, MCP23017/ MCP23S17- расширитель на 16 портов с широкими возможностями конфигурирования направления, прерываний и с вариантами шин IIC (TWI) и SPI, часы на DS3231+ 24С32 (можно заменить на FM24C32 или FM24C64), гнездо под микро- SD с конвертером уровней 5<->3,3В на LVC125A «Catalex v1.0», стабилизатор AMS1117 на 3.3В для плат Аrduino Nano без оного, зажимы KF141R-2.54 питания 4В для SIM800, 5В- питание от стабилизированного напряжения и зажимы для напряжения 7- 9В, зажимы для питания дополнительных модулей на 5 и 3.3В и 16 зажимов расширителя портов, 2- для ADC и 4- для портов от самой Аrduino Nano. Каждый порт имеет свой «общий» зажим соединённый с минусом. DIP- переключатели DS1040-XXX (ВДМ-1-ХХ) выбора адреса MCP23×17 и выводов прерываний МК от различных источников.

Вот такой вид со всеми модулями расширения


trxpqbajszv_0xy2ep-snqjlwm0.jpeg

Зажимы XS3V3 и XS5V на фотографии не видны, но они есть в последней версии.

Печатная плата


Рисовалась в Sprint Layout для изготовления методом ЛУТ, со стороны деталей используется 37 перемычек, несколько из них устанавливаются по мере надобности. Сначала сверловка плат выполнялась вручную. С помощью Anet A6 с минимальной доработкой получилось добиться приемлемого качества автоматического сверления. Процесс изготовления печатной платы до запаянной занял примерно сутки. Ширина зазора между дорожками в некоторых местах 0,2 мм и 0,3 мм и более в остальных. Ширина дорожек 0,5 мм минимум, в основном 0,7 и 0,8 мм.

Компоновка элементов исходя из размеров фольгированного стеклотекстолита FR-4 продаваемого в интернет- магазинах 100×150 мм. На модули запаиваются не квадратные шпильки 0,8 мм в «родном» исполнении, а занимающие меньшую площадь круглые, диаметром 0,5 мм. Они не мешают проходить проволочным перемычкам между ними со стороны деталей, легче провести дорожку между их площадками для пайки и сразу же дают возможность снять и запаять проверенный- настроенный модуль в рабочую плату.

x2wtx4pbkg6vwibommtgwarkovy.jpeg

Принципиальная схема
image alt


Описание схемы
Перемычка J1 используется для подключения стабилизатора 3.3 В установленного на плате Arduino Nano к другим потребителям, в случае использования внешнего U1 она не требуется. J2 и J3 дают 2 варианта подключения цепи сброса GSM модуля, через конвертер уровня и напрямую соответственно. J4 обходит ключ ШИМ- управления яркостью ST7735 на транзисторе VT1. J5- подключает вход ADC6 для контроля напряжения питания GSM модуля SIM800L. J6 подключает вывод опорного напряжения к 3.3 В. С1 и R3- внешняя цепь сброса. D1- защита от ошибочной смены полярности при использовании БП с напряжением выше требуемых 5 В. Входные цепи 16- ти портов расширителя и 4 от платы С0- С4 служат для подавления помех для защиты от повреждений и ложных сигналов. Туда входят, на примере 1- го входа расширителя XS1, R4, 5, 6, 68, C36, стабилитрон D7. Для защиты аналоговых входов служит сборка PRTR5V0U2X.

Далее DIP- переключатели:

SW1- подключает сигнал прерывания от порта А расширителя (вывод ITA) на вектор прерываний 0 (D2 Nano)
SW2- подключает сигнал прерывания от порта B расширителя (вывод ITB) на вектор прерываний 1 (D3 Nano)
SW3, 4, 5- выбор адреса расширителя если он с шиной IIC, А2, А1, А0 соответственно
SW6, 7, 8, 9- подключают шину расширителя если он с шиной SPI, MISO, SS, MOSI, SCK
SW10, 11- подключают шину IIC, SCL, SDA соответственно
SW12, 13- подключают сигнал прерывания от E01-ML01DP на 1 (D3) и 0 (D2) соответственно
SW14, 15- подключают сигнал прерывания от DS3231 на 1 (D3) и 0 (D2) соответственно


Некоторые ньюансы
Модуль LoRa-01 с шагом выводов 2 мм, предназначен для поверхностного монтажа, был распаян на переходной плате с конвертером уровней TXS0108 в корпусе TSSOP- 20 и антенным разъёмом IPX (U.FL).

goj89m2gqhprib_dye4_b6aglfy.jpeg

Kонвертер «Catalex v1.0» c LVC125A для использования «из коробки» не пригоден, была произведена доработка. Оторван вывод 13 и припаян к выводу 8 или можно к SMD- резистору R1 что подключен к выводу 9, разницы в работе не замечено.

На фото со всеми модулями платы вверху виден разъём SМА с гайкой, накрученный на антенный выход. Так вот, между центральным выводом и корпусом разъёма припаяны параллельно 2 сопротивления SMD типоразмера 1206 по 100 Ом каждый, что даст в сумме 50 Ом и 0,5 Вт рассеиваемой мощности. Это служит эквивалентом антенны и позволит не сжечь транзистор выходного усилителя. При работе на передачу в постоянном режиме с мощностью даже 100 мВт без нагрузки грозит выходом из строя модуля, а ведь ещё бывают и 500 мВт. При экспериментах приём- передача стабильно работает в пределах стола при минимальном уровне мощности.


Концепция повторного использования предыдущих наработок подтвердила свою эффективность. Сокращение времени до получения рабочего устройства, стало возможно быстро и малозатратно удовлетворять дополнительные требования. Удобно настраивать несколько модулей за раз используя разъёмное соединение. Свойства важные в условиях дефицита ресурсов.

Были разработаны и изготовлены GSM/ радиосигнализация, система сбора и логирования информации, учёт времени работы технологического оборудования. В работе многоканальная гирлянда (скоро Новый год), электрические защиты электродвигателей, технический учёт расхода электроэнергии, управление отоплением и освещением промышленных объектов, технологическим оборудованием.

Замечания, предложения, конструктивная критика приветствуются и да, уже осваиваю STM32, SW4STM32, Куб, так что без холиваров пожалуйста.

© Habrahabr.ru