Несложные оптические трюки со смартфоном: голограмма и проектор
Для начала, рассмотрим два забавных DIY-трюка с использованием смартфона. Для них не требуется почти никаких дополнительных компонентов, а те, что есть, стоят недорого. Всё работает, голограмма парит в воздухе, проектор выводит изображение, в приемлемом качестве. Работа предстоит с бумагой, ножницами, клеем.
В качестве руководства будем использовать видеолекции курса «Galaxy Upcycling — новая жизнь старого смартфона» который можно посмотреть на YouTube канале «IT ШКОЛЫ Samsung». Курс подготовлен российским Исследовательским центром Samsung (Samsung Research Russia) сотрудником которого я являюсь. При создании курса было решено двигаться в сторону образования и экспериментов. Основу курса составляют практико-ориентированные занятия с обучающими примерами, объясняющими, как превратить старый гаджет на платформе Android в новое устройство: мини-проектор, часы, умную гирлянду и т.д.
Два видеоруководства, разобранные в этой статье, пригодятся и педагогам: каждая поделка собирается за один-два школьных урока и для домашних занятий родителей с детьми. Хотя что там дети, такой мастер-класс отлично зайдет и для взрослых — поработать руками и включить мелкую моторику оказалось неожиданно приятно и полезно.
Поехали!
Голографическая пирамидка
Вот видеоруководство и дальше текстовая расшифровка, для тех, кто не любит смотреть, но любит читать:
Итак, голографическая пирамидка. Звучит круто, выглядит соответствующе. Чтобы спроецировать изображение, парящее в темноте как голограмма, нужно склеить пирамидку из прозрачного пластика, и поставить ее в темноте на экран смартфона или планшета.
Что понадобится:
Смартфон или планшет — без разницы, подойдет и то, и другое. Конечно, на планшете будет круче смотреться. Но можно и на смартфоне. Конкретная модель не важна.
Прозрачный пластик.
Скотч
Линейка
Маркер
Ножницы
Бумага в клеточку
Карандаш
Здесь вызвать затруднения может только прозрачный пластик. Где его взять:
Пластик от упаковки техники, например наушников, бритвы и так далее. Единственное условие, пластик нужен гладкий и не изогнутый, то есть бутылка не подойдет.
Другой вариант — коробочка от компакт-диска. Но этот вариант хуже, потому что там пластик жесткий и не гнется, а ломается, причем с трещинами по краям. И придется делать в четыре раза больше работы, при этом итог, скорее всего, не порадует. Если честно, никому не советую. Мне не удалось аккуратно отрезать такой пластик без трещин.
Листы пластика для брошюровки. Используются в качестве обложки документа. В магазине канцтоваров называются «Обложки для переплета пластиковые» формата А4. Только ни в коем случае не берите матовый, нужен именно прозрачный. На примере таких листов я и буду показывать.
Итак, начнем делать нашу крутую 3D-пирамиду. Нужно нарисовать развертку пирамиды на бумаге, вырезать, наложить, и потом склеить уже из прозрачного пластика. Развертка будет выглядеть так:
Понятно, что она состоит из четырех трапеций. Я не буду подгонять размеры под диагональ экрана конкретного смартфона. Размер трапеции для смартфона будет такой: 1 сантиметр ширина верхнего основания, 3,5 сантиметров высота, 6 сантиметров ширина нижнего основания. А для планшета то же, но в два раза больше.
Чертеж трапеции для телефона и для планшета.
Нужно четыре такие трапеции, начну с одной. Понадобится линейка. На клетчатой бумаге выйдет так:
Вырежем, получится одна грань пирамиды. Теперь прикладываем и обводим вырезанную трапецию четыре раза.
Получается то, что нужно — развертка пирамиды. Вырезаем:
Главное делать аккуратно. Я делала неаккуратно, и моя пирамида потом норовила завалиться вбок.
Так, вырезали бумажную пирамиду. Теперь возьмем пластик и на него это перенесем. Смело рисуйте маркером или фломастером, их легко смыть с пластика водой и губкой с чистящим средством.
Чтобы знать, как сгибать, подложу вниз бумажный чертеж и линии сгиба тоже нарисую на пластике.
Осталось вырезать и сложить. Сгибая, используйте линейку.
Склеим конструкцию тонким кусочком скотча, чтобы не разваливалась.
Давайте тестировать. Беру смартфон, открываю YouTube, там много готовых видео для 3D-пирамидки. Ищете просто по запросу »3d hologram». Чаще всего это видео с рыбками, цветочками, иногда еще и с музыкой.
Примеры видео:
Бабочки, птички, медузы, аниме
https://www.youtube.com/watch? v=BZ6fun_RKfk
Люди, лица, черепа
https://www.youtube.com/watch? v=bR3AJBRyV6g
Мультфильмы (миньоны, губка Боб)
https://www.youtube.com/watch? v=e5W0GLGd1hc
Ставлю пирамидку по центру. Она будет падать, если вы криво согнули или неаккуратно вырезали. Если снизу мешают острые углы, можно обрезать ножницами.
Теперь, если выключим свет, увидим, что медуза как бы плавает в воздухе, с какой бы грани ни посмотрели.
После того, как протестировали, скачайте видео и зациклите в стандартном проигрывателе на смартфоне, чтобы не мешала реклама и чтобы видео не менялось на другое. Еще одно направление развития — сделать собственное видео для пирамидки, например со своим лицом, рисуется в простейшей графической программе по видеоруководству.
Теперь удивляйте друзей забавной игрушкой!
Как это работает
Этот забавный пример, иллюстрирующий базовые законы геометрической оптики, давно известен в театре и цирке. Эффект впервые описал итальянский ученый еще в 17 веке. Называется «Призрак Пеппера», по фамилии британского инженера, который начал использовать трюк в театральных постановках, например, по повести Чарльза Диккенса «Призрачный человек».
Источник фото: https://en.wikipedia.org/wiki/Pepper%27s_ghost
Стекло стоит под углом 45 градусов. Снизу и впереди сцены комната с окрашенными черной краской стенами, в ней ярко освещенный актер. Отражение актера на стекле видят зрители.
В современности эта техника используется в телесуфлерах. Там между видеокамерой и спикером установлено стекло, на котором бегут строчки. Эти строчки — отражение экрана планшета, лежащего горизонтально под стеклом. Кстати, еще один пример того, как использовать старый планшет с пользой — тоже Upcycling. У нас в видеостудии Иследовательского центра Samsung так и сделано, планшет лежит в суфлере и его никогда не достают оттуда.
Ещё трюк используется в концертной индустрии для создания голограмм исполнителей. К примеру, изображение рэпера Тупака Шакура было представлено на сцене вместе с Доктором Дре и Снуп Догом в 2012 году. А в 2014 году таким же образом состоялось выступление Майкла Джексона.
Еще это единственный способ организовать выступление виртуального персонажа. Мультяшный вокалоид Мику Хатсуне только таким образом может петь и танцевать на сцене, в окружении реальных музыкантов. Потому что физически она не существует. Или например, группа Gorillaz, которая выступила вместе с Мадонной.
Есть современные примеры применения этой технологии в цирке: немецкий цирк Roncalli отказался от номеров с животными и заменил их голограммами. Слоны, лошади и рыбы выступают теперь в представлениях виртуально.
И конечно, если вы внимательно смотрели этот опыт, то понимаете, что здесь не настоящая голограмма, а оптическая проекция, не объемное изображение, а скорее псевдо-объемное. Но название трюка закрепилось такое — 3D голограмма — и искать в Интернете о нем информацию следует с таким названием.
Мини-проектор
Продолжаем рассказ о том, как проводить забавные эксперименты при помощи смартфона. Следующая лекция из видеокурса «Galaxy Upcycling — новая жизнь старого смартфона», также представленная на YouTube канале «IT ШКОЛЫ Samsung» — о том, как сделать мини-проектор:
Да, он показывает видео на стене! Пусть и не лучшем качестве. Причем изображение на стене будет гораздо крупнее того, что видите на экране смартфона, то есть свою задачу он выполняет. Здесь по-честному.
Конструкция такая: коробка из-под обуви, с крышкой, выкрашенная изнутри черной гуашью, с линзой в отверстии. Внутри подставка для смартфона. Подставка не фиксированная, подвижная, чтобы менять расстояние до линзы.
Что понадобится:
Смартфон любой модели
Коробка из-под обуви. Рекомендую взять компактную, не сильно широкую. Но в нее, конечно, должен пролезать смартфон.
Линза. Подойдет лупа для чтения. В продаже можно встретить трехкратные, с ними вы тоже можете сделать проектор, правда с удручающим качеством картинки. Поэтому рекомендую 7-кратную, она ненамного дороже. Проектор будет как настоящий!
Ножницы
Скотч
Черная гуашь
Кисть
Маникюрные ножницы
Канцелярский нож
Карандаш
Картон, чтобы сделать подставку для телефона
Приступаем. Берем коробку. Исхожу из того, что вы не хотите портить лупу и отпиливать у нее ручку — все-таки это полезная в хозяйстве вещь.
Поэтому придется взять коробку побольше, в которую лупа свободно помещается вместе с ручкой. Это скорее коробка от кроссовок или от сапог. Когда выбираете коробку, примеряйте лупу, чтобы подходила по размеру.
Чтобы вырезать отверстие, я разобрала коробку и отрезала лишние боковые стенки и верхнюю часть, потому что иначе линза не входила. Главное, что коробка все еще закрывается и не разваливается на части.
Нарисуем отверстие для линзы. Это сделать сложно, если нет циркуля. В этом случае найдите круглый предмет по диаметру немного меньше линзы — чашку, крем, бутылку. Мне идеально подошла стеклянная банка для туши. Здесь важно, что отверстие меньше линзы, потому что в коробку должно проникать минимум света, поэтому никаких свободных краев.
Теперь рисуем отверстие и вырезаем его. Картон толстый, ножницами будет трудно сделать это аккуратно. Я решила воспользоваться канцелярским ножом, но будьте осторожны, не порежьтесь. Другой вариант, если боитесь испортить стол: ножницы, только лучше не канцелярские (они большие), а маникюрные: ровнее получится вырезать окружность.
Теперь пристраиваем внутрь лупу. Возьму ленточку тонкого скотча и надрежу через промежутки, чтобы получились такие лепестки.
Отгибаем в стороны всю эту красоту. Приклеили, вот так линза держится.
Итак, исходим из того, что линза держится в коробке, и осталось придумать, как закрепить смартфон. Но хорошая новость в том, что вы уже можете протестировать конструкцию!
Для этого запустите видео, к примеру, с YouTube, на смартфоне. Желательно мультфильм с яркими заметными цветами. Яркость экрана поставьте на максимум. Пробовать нужно в темноте. Поставьте смартфон внутрь коробки и запустите видео.
Двигая смартфон вперед-назад рукой, заметите, что видео вдруг приобрело резкость. Вау! Вы проецируете мультфильм на стену!
Если не работает, то вероятно вы: криво закрепили линзу, взяли линзу с небольшим увеличением, неровно держите смартфон.
Итак, первый рабочий прототип готов! Теперь начинаем доводить наш мини-проектор до совершенства!
Чтобы не мешали посторонние отражения от стенок коробки, проектор стоит покрасить черной краской внутри или обклеить черной бумагой. Никаких щелочек быть не должно. Заклейте все отверстия в коробке. Я беру гуашь и кисточку, и будем заниматься приятным делом — красить коробку изнутри.
Смартфон неудобно держать рукой. Он должен стоять сам внутри коробки, поэтому будем делать для него картонную подставку. Мне было лень клеить отдельную конструкцию, и я сделала подставку, разрезав ненужную картонную коробку. Смартфон перевешивает подставку, поэтому утяжелите ее или сделайте из остатков картона опору. А сам смартфон приклейте к подставке скотчем.
Ну и последнее. Картинка должна быть вверх ногами, поэтому «защелкните» экран, чтобы автоповорот экрана не срабатывал. Это доступно не на всех версиях Android. В поздних такая фича есть, а вот в ранних — нет. Если защелкнуть экран не получается стандартным способом, скачайте приложение из Play Market наподобие Ultimate Rotation Control.
Ура! Самодельный проектор готов и работает! Конечно, он не заменит настоящего проектора. Но зато вы собрали его сами.
А теперь, когда всё получилось и пора хвастаться друзьям своим самодельным проектором, давайте разберемся, как же тут всё устроено.
Как это работает
Здесь ответы на два базовых вопроса:
Чтобы объяснить, я нарисовала картинки в онлайновом Open Source-симуляторе Ray Optics Simulator.
Это физика, 8 класс. Линзы бывают собирающие (слева) и рассеивающие (справа).
В нашем случае мы имеем дело с собирающей двояковыпуклой линзой.
Фокус линзы — это точка, в которой соберутся лучи после прохождения через собирающую линзу. Представим, что пустили пучок лучей, идущих параллельно. Лучи прошли через линзу и оказались вот тут, в фокусе.
Через оптический центр линзы лучи проходят без преломления.
Эта линия еще называется главная оптическая ось линзы.
Посмотрим, как будет формироваться изображение точки, лежащей не на главной оптической оси линзы, а в стороне от нее.
Луч, проходящий через оптический центр линзы, пройдет прямолинейно.
А другой луч переломится через линзу и пройдет через фокус. На пересечении этих двух лучей и будет изображение точки.
Теперь уже нетрудно понять, как формируется изображение. Предположим некий предмет. Для определенности, поставлю его на расстоянии, превышающем фокусное, но не сильно. Дальше объясню, почему.
Рисуем путь лучей, как в предыдущем примере с точкой. Первый луч проходит через оптический центр линзы.
Второй луч проводим перпендикулярно линзе, дальше он преломляется и идет в точку фокуса. На пересечении этих двух лучей и получается точка.
Опускаем из нее перпендикуляр. Вот так будет выглядеть изображение. Видим, что оно увеличенное.
Далеко не всегда картинка будет увеличенная, и вы можете убедиться в этом, проводя эксперименты с самодельным проектором.
Предмет в фокусе. Тогда изображение отсутствует. Видите, что здесь нет пересечения.
Предмет между фокусом и двойным фокусом. Изображение перевернутое, увеличенное.
Предмет в двойном фокусе. Изображение перевернутое, равное.
Предмет за двойным фокусом. Изображение перевернутое, уменьшенное.
Человеческий глаз тоже устроен как линза, и изображение попадает на нашу сетчатку перевернутым. Но мозг научился переворачивать изображение.
Заключение
Если знаете еще нетривиальные примеры использования смартфона в образовании, научных экспериментах, в системе Умного дома, в качестве игрушки или гаджета, пишите в личку. Мы хотим продолжить снимать новые серии видеокурса «Galaxy Upcycling — новая жизнь старого смартфона», и ваши идеи с благодарностью могут быть использованы для создания новых лекций курса, с указанием авторства.
Татьяна Волкова, куратор трека по Интернету вещей социально-образовательной программы для вузов «IT Академия Samsung»