Математика кожи: выращивание эпидермиса на основе математического моделирования

gqlqhh9npdfp_snaxjbyl3rnftg.jpeg

Организм человека можно спокойно сравнивать с очень сложным и порой запутанным механизмом, к которому не прилагалась инструкция, посему ученым приходится самим во всем разбираться. В нашем теле много систем, от нервной до иммунной, каждая из которых выполняет свои определенные функции и связывается с другими системами, что позволяет организму эффективно функционировать. В научно-исследовательском сообществе львиная доля внимания приходится на нервную систему. Всех тянет раскрыть секреты нашего мозга, который так часто сравнивают по загадочности с Вселенной. Но другие системы не менее интересны, сложны и важны. Сегодня мы с вами рассмотрим исследование, объединившее в себе математику, биохимию и много любопытства. А целью сего исследования является эпидермис, то бишь кожа человека. Как математика помогла ученым понять чего им не хватало в процессе выращивания кожи и что у них получилось в результате? На эти и другие вопросы мы попытаемся ответить с помощью доклада исследовательской группы. Поехали.

Пожизненная «броня»

Кожа человека не так проста, как может показаться на первый взгляд. Кто-то может считать ее просто оболочкой, а кто-то и вовсе «мешком для костей». Но оставим в сторонке высказывания самого аморального робота в мире по имени Бендер и углубимся в структуру кожи человека.

Во-первых, кожа это самый большой орган человеческого тела (других существ не будем затрагивать, учитывая рассматриваемое исследование), состоящий из трех основных подсистем: эпидермис (внешний слой), дерма (соединительная ткань между верхним слоем кожи и органами) и подкожно-жировая клетчатка (терморегулирующий и защитный слой с функцией «хранилища» питательных веществ).

p6mju3omxwx7xm1lfvmbbxu3b7w.png
Строение кожи человека.

Поскольку в исследовании ученые «колдуют» над эпидермисом, мы рассмотрим этот слой подробнее.

Эпидермис человека, если вы одинаково любите анатомию и кулинарию, напоминает торт Наполеон, ибо состоит из пяти слоев. В каждом из слоев имеются клетки, которые являются главными «испытуемыми» в рассматриваемом нами исследовании — кератиноциты. В эпидермисе они вообще занимают львиную долю — порядка 90% от всех клеток.

x7dtqihjehkhn6zkfymhk9-8qfi.jpeg

Функции кератиноцитов разнятся в зависимости от принадлежности к определенному слою:

  • базальный — самый близкий к дерме слой, в котором такие клетки как кератиноциты именуются базальными, что вполне логично. Эти клетки в сопряжении со стволовыми занимаются важным процессом — регенерацией эпидермиса. Также в цитоплазме кератиноцитов имеются меланосомы — гранулы меланина, полученные от меланоцитов (клеток), которые защищают нас от воздействия ультрафиолетового излучения.
  • шиповатый слой получил свое колючее название за счет необычной структуры клеток кератиноцитов, имеющих шипообразные отростки для соединения друг с другом. В цитоплазме местных кератиноцитов происходит синтез кератина, участвующего в формировании волос и ногтей. С биологической точки зрения, кератин уступает по физической прочности только хитину. Помимо этого тут есть и кератиносомы, которые делают нашу кожу гидрофобной.
  • зернистый слой — кератиноциты также обладают кератиносомами, то есть препятствуют обезвоживанию кожи. Также кератиноциты в данном слое синтезируют некоторые белки.
  • блестящий слой назван так, поскольку при микроскопии не выявляются клетки, а сам слой похож на однородную полоску розового цвета. Так оно и есть — ядра, органеллы и межклеточные соединения кератиноцитов в данном слое разрушаются. При этом имеется вещество, связывающее кератиноциты (или то, что от них осталось). Это делает кожу прочной.
  • роговой — наружный слой эпидермиса, контактирующий с окружающей средой. А еще его можно назвать самым настоящим клеточным кладбищем, ибо образован он из мертвых кератиноцитов (именуемых роговыми чешуйками), которые постоянно обновляются. Это обеспечивает эффективную защиту от внешних факторов.

gytd2rmqr04_uyjyuuipgqzxo_k.jpeg
Клетка кератиноцита

Стоит также упомянуть и тот факт, что кератиноциты участвуют и в заживлении ран. При повреждении кожи клетки кератиноцитов начинают активно делиться и мигрировать к области травмы, где происходит эпителизация, то есть ранка начинает зарастать.

Как мы можем понять по этим слоям, кератиноцитов много и они выполняют разные функции, когда работают совместно с клетками другого типа. Универсальные солдаты среди клеток эпидермиса, никак иначе.

В чем же проблема исследования, спросите вы? А в том, что нормальный слой эпидермиса человека примерно 100 мкм в толщину, а вот искусственный (созданный посредством пассирования кератиноцитов) всего лишь 10 мкм.

Пассирование клеток* — отбор необходимого числа клеток для их дальнейшего выращивания на субстрате (например, в чашке Петри).

Такой эпидермис попросту будет неэффективен, как танк из папье-маше. И вот тут может помочь математика, а именно математическая модель. О ней и поговорим далее.

Основа исследования

Ученые и раньше использовали математические модели в качестве основы процесса создания человеческого эпидермиса. В данном же исследовании была разработана новая методика эпидермального гомеостаза, в основе которой лежит именно математическая модель распределяемых в базальном слое кератиноцитов, полученных из стволовых клеток. Стоит отметить, что в модели также учитывались динамические процессы в эпидермисе (миграция и дифференцировка клеток кожи) и внутриклеточные процессы, связанные с Ca2+.

Данная математическая модель позволила понять, что важнейшую роль в синтезе эпидермиса необходимой толщины и структуры играет распределение стволовых клеток и структура базальных мембран, отделяющих соединительную ткань от эпителия.

Если же более конкретно говорить о таком показателе как толщина, то именно базальные мембраны играют главную роль. Для достижения необходимого результата ученые применили синусоидальную модуляцию для формы базальной мембраны, изменяя амплитуду и длину волны. В результате чего было обнаружено, что для стабильной структуры эпидермиса необходимой толщины требуется волнистые базальные мембраны с большой амплитудой и короткой длиной волны. То есть волнообразность папиллярного слоя, расположенного над дермой и под эпидермисом, является критически важной для создания модели эпидермиса, приближенной к реальным физиологическим показателям.

Помимо толщины и прочности кожа человека обладает еще и гидрофобностью, которая зависит от толщины рогового слоя. Соответственно, толщина этого слоя также должна учитываться в экспериментальной модели для более реалистичного воссоздания эпидермиса.

Объединив все желаемое и необходимое, ученые спроектировали модель для демонстрации возможности создания приближенного к реальности эпидермиса, включающего в себя роговой слой и межклеточную пластинчатую липидную структуру. Реализация всего этого осуществлялась путем посева пассированных кератиноцитов на волнистой поверхности полиэфирной основы в открытых чашках Петри.

Результаты были весьма успешны, чем подтвердили не только полноценность и корректность данного метода выращивания, но и важность использования математических моделей, как инструментов прогнозирования процессов.

Результаты исследования

neso9-2pll21r3lwj-awzx-ulge.jpeg
Изображение №1

На изображениях выше показаны результаты моделирования и результаты выращивания эпидермиса на основе этого моделирования.

Исследователи обращают наше внимание на два очень показательных изображения ( и ). В первом случае имеется плоская базальная мембрана, во втором — синусоидальная, которая и позволила увеличить толщину и прочность эпидермиса.

Но это лишь модель, хоть и с очень заманчивыми результатами, для получения которых необходимо установить какие параметры должна иметь основа для посева (полиэфир). Для этого была проанализирована структура паппилярного слоя, толщина которого у человека составляет 51 мкм, а интервал «волнистости» — 105 мкм (анализировалась кожа на брюшной полости, средний возраст участников исследования — 36.3 года).

На изображении показаны снимки (цвет получен за счет гематоксилина и эозина) полученного эпидермиса при разных вариантах основы (#200, #255, #300, #350, #460 и #480). В самом верху изображения (»Control») — эпидермис без волнистой основы выступает как контрольная группа для сравнения результатов.

Самыми интересными для ученых стали варианты #200, #255 и #300, показавшие хорошую толщину в сравнении с контрольным образцом. Живой слой эпидермиса на основе #255 был толще, чем на основе #200 и #300. Посему именно этот вариант и был выбран для дальнейшего изучения.

Коротенький вывод — волнообразная основа для посева приводит к увеличению числа живых клеток эпидермиса и к его утолщению и уплотнению, что приближает выращенный образец по показателям к реальному человеком эпидермису.

vnwq2hmaa0g8_kh_jqevdyvep2c.jpeg
Изображение №2

Одну из ключевых ролей в эпидермисе играют структурные белки филаггрин, лорикрин, клаудин 1 и ZO-1. Дабы проверить нормально ли протекала экспрессия (синтез) этих белков, ученые провели иммуногистохимическое исследование эпидермиса, выращенного на основе #255.

Филаггрин (), лорикрин () и ZO-1 () были экспрессированы в верхнем слое эпидермиса. А экспрессия клаудина 1 прошла в клеточной мембране по всей плоскости эпидермиса (2D).

Обратите внимание на изображение 2G, на котором черной стрелкой и знаком »*» отмечен определенный слой — роговой. Это говорит о том, что данный синтезированный эпидермис имеет хорошие защитные (от внешних факторов) характеристики.

Иммуногистохимическое исследование проводилось также и с эпидермисом на основе #300, чтобы сравнить с показателями эпидермиса #255. Экспрессия клаудина 1 и ZO-1 была выявлена в обоих вариантах, но в #255 она была значительно сильнее. В подтверждение этому был проведен еще один тест — измерение трансэпидермальной потери воды контрольного и #255 образцов. График результатов данного теста () наглядно демонстрирует, что потеря воды у образца #255 значительно ниже, что еще раз подтверждайте его высокие барьерные (и защитные) характеристики.

ujdef97k_1ti3vhzgnmqmnappxg.jpeg
Изображение №3

Окрашивание образца посредством анти-бромдезоксиуридиновых антител (анти-BrdU) показало, что пролиферирующие клетки присутствуют только в нижней части контрольного образца (), в то время как в тестовом образце #255 эти же клетки были найдены и на волокнах полиэфирной основы (, черные стрелки).

Исследователи также проверили белок CSPG4, который играет очень важную роль во взаимодействии клетки и субстрата. Анализ показал наличие данных клеток на волокнах основы (3D, белые стрелки), что говорит о наличии на волокнах клеток, часть которых имеет пролиферирующие свойства.

В дополнение к этому было проведено тестирование с анти-бромдезоксиуридиновыми антителами и K14, который является маркером базального слоя эпидермиса. Образец #255 показал уникальный результат — наличие K14 и BrdU на поверхности полиэфирной основы. Это говорит о том, что пролиферирующие клетки распознают поверхность основы как базальный слой.

Следующим испытуемым стал белок YAP, который участвует в регуляции транскрипции (синтеза РНК в клетках за счет ДНК). В контрольном образце YAP был локализован исключительно на базальном слое (). А вот в тестовом образце YAP присутствовал вокруг волокон (3F, красные стрелки).

Применение малых интерферирующих РНК в процессе анализа активности белка YAP привел к дестабилизации трехмерной структуры (3G и 3H).

В контрольном образце с применением малых интерферирующих РНК белок YAP был экспрессирован вокруг волокон (3I), а в тестовом образце экспрессия была незначительна (3J). Но, несмотря на это, применение малых интерферирующих РНК никак не повлияло на пролиферацию кератиноцитов.

Для более детального ознакомления с нюансами и подробностями исследования настоятельно рекомендую заглянуть в доклад исследовательской группы и дополнительные материалы к нему.

Эпилог

Данное исследование совместило в себе биохимию и математику. Конечно, эти две науки очень часто ходят парой, если ученые намерены получить достоверные и адекватные результаты. Применение математического моделирования в данном случае помогло понять важность волнообразности основы для выращивания эпидермиса, что значительно увеличивает число живых клеток и, как следствие, толщину и прочность образца.

Сей труд по большей степени был нацелен на проверку работоспособности именно математической модели, а не самой техники выращивания эпидермиса. Те трудности, с которыми сталкивались исследователи ранее, более не будут мешать им продолжать более детальное изучение способов синтеза клеток и выращивания эпидермиса в таком виде, который будет максимально приближен к реальному.

Результаты этого труда вполне могут в дальнейшем стать достаточно важным шагом вперед как для трансплантологии, так и для исследований кожи человека в целом, а также подтолкнуть других исследователей более активно применять математическое моделирование как инструмент первоочередной важности.

Благодарю за внимание, оставайтесь любопытствующими и отличной всем рабочей недели, ребята.

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5–2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

VPS (KVM) E5–2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до весны бесплатно при оплате на срок от полугода, заказать можно тут.

Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5–2650v4 128GB DDR4 6×480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5–2650 v4 стоимостью 9000 евро за копейки?

© Habrahabr.ru